HEAL DSpace

Descent-penalty methods for relaxed nonlinear elliptic optimal control problems

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Chryssoverghi, I en
dc.contributor.author Geiser, J en
dc.date.accessioned 2014-03-01T02:51:35Z
dc.date.available 2014-03-01T02:51:35Z
dc.date.issued 2008 en
dc.identifier.issn 03029743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/35576
dc.subject.other Accumulation points en
dc.subject.other Classical methods en
dc.subject.other Classical solutions en
dc.subject.other Computing time en
dc.subject.other Control constraint en
dc.subject.other Control variable en
dc.subject.other Cost functionals en
dc.subject.other Discrete Control en
dc.subject.other Discretizations en
dc.subject.other Extremal en
dc.subject.other Galerkin finite element methods en
dc.subject.other Non-Linearity en
dc.subject.other Numerical example en
dc.subject.other Optimal control problem en
dc.subject.other Optimization method en
dc.subject.other Penalty methods en
dc.subject.other Relaxed problem en
dc.subject.other Second order elliptic en
dc.subject.other State constraints en
dc.subject.other Computational fluid dynamics en
dc.subject.other Computer science en
dc.subject.other Nonlinear equations en
dc.subject.other Partial differential equations en
dc.subject.other Refining en
dc.subject.other Optimization en
dc.title Descent-penalty methods for relaxed nonlinear elliptic optimal control problems en
heal.type conferenceItem en
heal.identifier.primary 10.1007/978-3-540-78827-0_33 en
heal.identifier.secondary http://dx.doi.org/10.1007/978-3-540-78827-0_33 en
heal.publicationDate 2008 en
heal.abstract An optimal control problem is considered, described by a second order elliptic partial differential equation, jointly nonlinear in the state and control variables, with high monotone nonlinearity in the state, and with control and state constraints. Since no convexity assumptions are made, the problem may have no classical solutions, and so it is reformulated in the relaxed form. The relaxed problem is discretized by a Galerkin finite element method for state approximation, while the controls are approximated by elementwise constant relaxed ones. The first result is that relaxed accumulation points of sequences of admissible and extremal discrete controls are admissible and extremal for the continuous relaxed problem. We then propose a mixed conditional descent-penalty method, applied to a fixed discrete relaxed problem, and also a progressively refining version of this method that reduces computing time and memory. We show that accumulation points of sequences generated by the fixed discretization (resp. progressively refining) method are admissible and extremal for the discrete (resp. continuous) relaxed problem. Numerical examples are given. This paper proposes relaxed discretization and optimization methods instead of the corresponding classical methods presented in [5]. Considered here problems are with not necessarily convex control constraint sets, and with state constraints and cost functionals depending also on the state gradient. Also, the results of Sections 1 and 2 generalize those of [8] w.r.t. the assumptions made. © 2008 Springer. en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
dc.identifier.doi 10.1007/978-3-540-78827-0_33 en
dc.identifier.volume 4818 LNCS en
dc.identifier.spage 300 en
dc.identifier.epage 308 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής