dc.contributor.author |
Bekos, MA |
en |
dc.contributor.author |
Kaufmann, M |
en |
dc.contributor.author |
Potika, K |
en |
dc.contributor.author |
Symvonis, A |
en |
dc.date.accessioned |
2014-03-01T02:51:44Z |
|
dc.date.available |
2014-03-01T02:51:44Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
03029743 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/35615 |
|
dc.subject |
Crossing minimization |
en |
dc.subject |
Lines |
en |
dc.subject |
Metro maps |
en |
dc.subject |
Paths |
en |
dc.subject |
Trees |
en |
dc.subject.other |
Crossings (pipe and cable) |
en |
dc.subject.other |
Drawing (graphics) |
en |
dc.subject.other |
Graph theory |
en |
dc.subject.other |
Maps |
en |
dc.subject.other |
Optical projectors |
en |
dc.subject.other |
Arbitrary graphs |
en |
dc.subject.other |
Crossing minimization |
en |
dc.subject.other |
Crossing minimization problem |
en |
dc.subject.other |
Graph drawing |
en |
dc.subject.other |
Graph G |
en |
dc.subject.other |
International symposium |
en |
dc.subject.other |
Lines |
en |
dc.subject.other |
Metro maps |
en |
dc.subject.other |
Optimal solutions |
en |
dc.subject.other |
Paths |
en |
dc.subject.other |
Railway lines |
en |
dc.subject.other |
Terminal stations |
en |
dc.subject.other |
Train stations |
en |
dc.subject.other |
Tree networks |
en |
dc.subject.other |
Trees |
en |
dc.subject.other |
Variations of |
en |
dc.subject.other |
Trees (mathematics) |
en |
dc.title |
Line crossing minimization on metro maps |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/978-3-540-77537-9_24 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/978-3-540-77537-9_24 |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
We consider the problem of drawing a set of simple paths along the edges of an embedded underlying graph G∈=∈(V,E), so that the total number of crossings among pairs of paths is minimized. This problem arises when drawing metro maps, where the embedding of G depicts the structure of the underlying network, the nodes of G correspond to train stations, an edge connecting two nodes implies that there exists a railway line which connects them, whereas the paths illustrate the lines connecting terminal stations. We call this the metro-line crossing minimization problem (MLCM). In contrast to the problem of drawing the underlying graph nicely, MLCM has received fewer attention. It was recently introduced by Benkert et. al in [4] . In this paper, as a first step towards solving MLCM in arbitrary graphs, we study path and tree networks. We examine several variations of the problem for which we develop algorithms for obtaining optimal solutions. © 2008 Springer-Verlag Berlin Heidelberg. |
en |
heal.journalName |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
en |
dc.identifier.doi |
10.1007/978-3-540-77537-9_24 |
en |
dc.identifier.volume |
4875 LNCS |
en |
dc.identifier.spage |
231 |
en |
dc.identifier.epage |
242 |
en |