HEAL DSpace

Line crossing minimization on metro maps

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Bekos, MA en
dc.contributor.author Kaufmann, M en
dc.contributor.author Potika, K en
dc.contributor.author Symvonis, A en
dc.date.accessioned 2014-03-01T02:51:44Z
dc.date.available 2014-03-01T02:51:44Z
dc.date.issued 2008 en
dc.identifier.issn 03029743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/35615
dc.subject Crossing minimization en
dc.subject Lines en
dc.subject Metro maps en
dc.subject Paths en
dc.subject Trees en
dc.subject.other Crossings (pipe and cable) en
dc.subject.other Drawing (graphics) en
dc.subject.other Graph theory en
dc.subject.other Maps en
dc.subject.other Optical projectors en
dc.subject.other Arbitrary graphs en
dc.subject.other Crossing minimization en
dc.subject.other Crossing minimization problem en
dc.subject.other Graph drawing en
dc.subject.other Graph G en
dc.subject.other International symposium en
dc.subject.other Lines en
dc.subject.other Metro maps en
dc.subject.other Optimal solutions en
dc.subject.other Paths en
dc.subject.other Railway lines en
dc.subject.other Terminal stations en
dc.subject.other Train stations en
dc.subject.other Tree networks en
dc.subject.other Trees en
dc.subject.other Variations of en
dc.subject.other Trees (mathematics) en
dc.title Line crossing minimization on metro maps en
heal.type conferenceItem en
heal.identifier.primary 10.1007/978-3-540-77537-9_24 en
heal.identifier.secondary http://dx.doi.org/10.1007/978-3-540-77537-9_24 en
heal.publicationDate 2008 en
heal.abstract We consider the problem of drawing a set of simple paths along the edges of an embedded underlying graph G∈=∈(V,E), so that the total number of crossings among pairs of paths is minimized. This problem arises when drawing metro maps, where the embedding of G depicts the structure of the underlying network, the nodes of G correspond to train stations, an edge connecting two nodes implies that there exists a railway line which connects them, whereas the paths illustrate the lines connecting terminal stations. We call this the metro-line crossing minimization problem (MLCM). In contrast to the problem of drawing the underlying graph nicely, MLCM has received fewer attention. It was recently introduced by Benkert et. al in [4] . In this paper, as a first step towards solving MLCM in arbitrary graphs, we study path and tree networks. We examine several variations of the problem for which we develop algorithms for obtaining optimal solutions. © 2008 Springer-Verlag Berlin Heidelberg. en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
dc.identifier.doi 10.1007/978-3-540-77537-9_24 en
dc.identifier.volume 4875 LNCS en
dc.identifier.spage 231 en
dc.identifier.epage 242 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής