HEAL DSpace

Real-time video analysis and personalized media streaming environments for large scale athletic events

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Papaoulakis, N en
dc.contributor.author Doulamis, N en
dc.contributor.author Patrikakis, C en
dc.contributor.author Soldatos, J en
dc.contributor.author Pnevmatikakis, A en
dc.contributor.author Protonotarios, E en
dc.date.accessioned 2014-03-01T02:51:47Z
dc.date.available 2014-03-01T02:51:47Z
dc.date.issued 2008 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/35653
dc.subject Ambient camera selection en
dc.subject Personalized media streaming en
dc.subject Real time context awareness en
dc.subject User-centric networking en
dc.subject.other Ambient camera selection en
dc.subject.other Camera selection en
dc.subject.other Context- awareness en
dc.subject.other Real time en
dc.subject.other User-centric en
dc.subject.other Acoustic streaming en
dc.subject.other Cameras en
dc.subject.other Management en
dc.subject.other Neural networks en
dc.subject.other Technical presentations en
dc.subject.other Video streaming en
dc.subject.other Media streaming en
dc.title Real-time video analysis and personalized media streaming environments for large scale athletic events en
heal.type conferenceItem en
heal.identifier.primary 10.1145/1463542.1463560 en
heal.identifier.secondary http://dx.doi.org/10.1145/1463542.1463560 en
heal.publicationDate 2008 en
heal.abstract This paper presents the architecture of the My-e-Director 2012, an FP7 call-1 European funded project in the objective area of Networked Media. My-e-Director 2012 is a unique interactive broadcasting platform, which enables end-users to have access on innovative services, like selection of focal actors/scenes and points of interest within real-time broadcasted streams. Emphasis is placed on the ambient camera selection module, which is the heart of the My-e-Director project. The ambient camera selection is responsible for detecting athletes in large-scale Olympic events. Then, this information is fed back to the system in order to allow for personalized video steaming and delivery services. Since detection of human in athletic event is a very demanding task, our method is based on a retrainable neural network architecture, which non-linearly models the color and texture properties of the object of interest. The retraining algorithm adapts the neural network model to fit the current environmental conditions, while simultaneously trusts as much as possible the previous information. The neural network classifier is combined with a conventional motion-based tracking scheme, which provides accurate contour detection. Aspects of multiple camera configurations are discussed. Copyright 2008 ACM. en
heal.journalName MM'08 - Proceedings of the 2008 ACM International Conference on Multimedia, with co-located Symposium and Workshops en
dc.identifier.doi 10.1145/1463542.1463560 en
dc.identifier.spage 105 en
dc.identifier.epage 111 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής