HEAL DSpace

Simulation and experimental study of an ellipsoidal cavity reflector as part of a focused passive brain imaging system

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Karathanasis, KT en
dc.contributor.author Gouzouasis, IA en
dc.contributor.author Karanasiou, IS en
dc.contributor.author Uzunoglu, NK en
dc.date.accessioned 2014-03-01T02:51:48Z
dc.date.available 2014-03-01T02:51:48Z
dc.date.issued 2008 en
dc.identifier.issn 16800737 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/35663
dc.subject Brain temperature fluctuations en
dc.subject Conductivity variations en
dc.subject Ellipsoidal cavity en
dc.subject Hyperthermia en
dc.subject Microwave radiometry en
dc.subject.other Brain temperatures en
dc.subject.other Conductivity variation en
dc.subject.other Ellipsoidal cavity en
dc.subject.other Hyperthermia en
dc.subject.other Microwave radiometry en
dc.subject.other Conductive materials en
dc.subject.other Focusing en
dc.subject.other Imaging systems en
dc.subject.other Microwaves en
dc.subject.other Radiometers en
dc.subject.other Radiometry en
dc.subject.other Reflection en
dc.subject.other Temperature distribution en
dc.subject.other Dielectric materials en
dc.title Simulation and experimental study of an ellipsoidal cavity reflector as part of a focused passive brain imaging system en
heal.type conferenceItem en
heal.identifier.primary 10.1007/978-3-540-89208-3_372 en
heal.identifier.secondary http://dx.doi.org/10.1007/978-3-540-89208-3_372 en
heal.publicationDate 2008 en
heal.abstract An ellipsoidal cavity used as a reflector to achieve selective beamforming and focusing on body areas of interest has been successfully used the past few years as one of the main modules of a microwave radiometry imaging system. Based on passive remote microwave monitoring, this system has been designed and constructed for brain intracranial applications. During the past years, it has been extensively tested both theoretically and experimentally and results have shown that it seems capable to measure changes of temperature and/or conductivity in phantoms and subcutaneous tissues. The objective of the present research is twofold: on one hand to theoretically study new configurations of the system by changing the ellipsoidal reflector setup and dielectric filling material; on the other, to experimentally examine the system performance using a new, volume reduced cavity that has been constructed based on previous theoretical results. More specifically, new simulations retaining only one half of the ellipsoidal conductive wall cavity filled with dielectric matching materials were carried out, with the view to potentially improve the system's focusing attributes and result in the construction of a more portable version of the existing system. In parallel, experiments with phantoms using a new, modified ellipsoidal cavity are carried out to identify its focusing properties and to verify previous theoretical studies. The obtained results suggest that by using the appropriate combination of operation frequencies, ellipsoidal reflector dimensions and dielectric filling material, it is possible to monitor focusing areas of interest with a variety of detection depths and spatial resolution in order to meet the desired focusing requirements of a given imaging application. © 2009 Springer Berlin Heidelberg. en
heal.journalName IFMBE Proceedings en
dc.identifier.doi 10.1007/978-3-540-89208-3_372 en
dc.identifier.volume 22 en
dc.identifier.spage 1565 en
dc.identifier.epage 1569 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής