HEAL DSpace

Sliding blocks under Near-fault pulses: Closed-form solutions

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Voyagaki, E en
dc.contributor.author Mylonakis, G en
dc.contributor.author Psycharis, IN en
dc.date.accessioned 2014-03-01T02:51:48Z
dc.date.available 2014-03-01T02:51:48Z
dc.date.issued 2008 en
dc.identifier.issn 08950563 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/35664
dc.subject.other Analytical and numerical solutions en
dc.subject.other Closed form solutions en
dc.subject.other Closed-form expression en
dc.subject.other Frictional strength en
dc.subject.other Geotechnical engineers en
dc.subject.other Ground accelerations en
dc.subject.other Ground motions en
dc.subject.other Ground velocity en
dc.subject.other Near-fault en
dc.subject.other Near-fault earthquake en
dc.subject.other Peak displacement en
dc.subject.other Peak response en
dc.subject.other Permanent displacements en
dc.subject.other Plastic response en
dc.subject.other Pulse waveforms en
dc.subject.other Residual soil en
dc.subject.other Rigid block en
dc.subject.other Rupture directivity en
dc.subject.other Salient features en
dc.subject.other Sliding blocks en
dc.subject.other Time history en
dc.subject.other Wave forms en
dc.subject.other Civil engineering en
dc.subject.other Earthquakes en
dc.subject.other Engineering en
dc.subject.other Engineering geology en
dc.subject.other Friction en
dc.subject.other Soil structure interactions en
dc.subject.other Soils en
dc.subject.other Geotechnical engineering en
dc.title Sliding blocks under Near-fault pulses: Closed-form solutions en
heal.type conferenceItem en
heal.identifier.primary 10.1061/40975(318)130 en
heal.identifier.secondary http://dx.doi.org/10.1061/40975(318)130 en
heal.publicationDate 2008 en
heal.abstract Analytical and numerical solutions are presented for the rigid-plastic response of geo-structures to idealized ground acceleration pulses. These shock-like waveforms are typical of near-fault earthquake motions generated by forward fault-rupture directivity and may inflict large permanent displacements in the absence of substantial residual soil strength. The geo-structures are modeled as rigid blocks resting on inclined frictional planes. Although idealized, these models are widely accepted by geotechnical engineers, for simulating a variety of structures including retaining walls, embankments and slopes. Four basic simple pulse waveforms are examined: (1) rectangular; (2) sinusoidal; (3) triangular; (4) exponential. An analytical study is presented on the effect of frictional strength and number of excitation cycles on peak displacements. Results are presented in the form of dimensionless graphs and closed-form expressions that elucidate the salient features of the problem. It is shown that Newmark approaches based on conventional motions may under- or over-estimate peak displacements depending on the circumstances. It is also shown that all three time histories of ground motion (i.e., acceleration, velocity, and displacement) control peak response - contrary to the widespread view that ground velocity alone is of leading importance. Issues related to scaling laws of peak displacement are discussed. © 2008 ASCE. en
heal.journalName Geotechnical Special Publication en
dc.identifier.doi 10.1061/40975(318)130 en
dc.identifier.issue 181 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής