HEAL DSpace

Texture analysis of tissues in Gleason grading of prostate cancer

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Alexandratou, E en
dc.contributor.author Yova, D en
dc.contributor.author Gorpas, D en
dc.contributor.author Maragos, P en
dc.contributor.author Agrogiannis, G en
dc.contributor.author Kavantzas, N en
dc.date.accessioned 2014-03-01T02:51:50Z
dc.date.available 2014-03-01T02:51:50Z
dc.date.issued 2008 en
dc.identifier.issn 16057422 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/35674
dc.subject Gleason scoring en
dc.subject Gray Level Co-occurrence Matrix (GLCM) en
dc.subject prostate cancer en
dc.subject Texture analysis techniques en
dc.subject.other Cancer prognosis en
dc.subject.other Computer vision techniques en
dc.subject.other Decision supports en
dc.subject.other Diagnostic ability en
dc.subject.other Discrimination analysis en
dc.subject.other Gleason grading en
dc.subject.other Gleason scores en
dc.subject.other Gleason scoring en
dc.subject.other Gold standards en
dc.subject.other Gray level co-occurrence matrix en
dc.subject.other Histopathological images en
dc.subject.other Image fields en
dc.subject.other Image properties en
dc.subject.other Image texture analysis en
dc.subject.other matrix en
dc.subject.other Multiparameters en
dc.subject.other Novel methods en
dc.subject.other Prostate cancers en
dc.subject.other Second order statistics en
dc.subject.other Texture analysis en
dc.subject.other Texture analysis techniques en
dc.subject.other Texture characteristics en
dc.subject.other Treatment planning en
dc.subject.other Variable selection en
dc.subject.other Whole process en
dc.subject.other Biomolecules en
dc.subject.other Computer vision en
dc.subject.other Decision support systems en
dc.subject.other Diseases en
dc.subject.other Histology en
dc.subject.other Image segmentation en
dc.subject.other Surfaces en
dc.subject.other Textures en
dc.subject.other Tissue en
dc.subject.other Grading en
dc.title Texture analysis of tissues in Gleason grading of prostate cancer en
heal.type conferenceItem en
heal.identifier.primary 10.1117/12.763377 en
heal.identifier.secondary http://dx.doi.org/10.1117/12.763377 en
heal.identifier.secondary 685904 en
heal.publicationDate 2008 en
heal.abstract Prostate cancer is a common malignancy among maturing men and the second leading cause of cancer death in USA. Histopathological grading of prostate cancer is based on tissue structural abnormalities. Gleason grading system is the gold standard and is based on the organization features of prostatic glands. Although Gleason score has contributed on cancer prognosis and on treatment planning, its accuracy is about 58%, with this percentage to be lower in GG2, GG3 and GG5 grading. On the other hand it is strongly affected by ""inter- and intra observer variations"", making the whole process very subjective. Therefore, there is need for the development of grading tools based on imaging and computer vision techniques for a more accurate prostate cancer prognosis. The aim of this paper is the development of a novel method for objective grading of biopsy specimen in order to support histopathological prognosis of the tumor. This new method is based on texture analysis techniques, and particularly on Gray Level Co-occurrence Matrix (GLCM) that estimates image properties related to second order statistics. Histopathological images of prostate cancer, from Gleason grade2 to Gleason grade 5, were acquired and subjected to image texture analysis. Thirteen texture characteristics were calculated from this matrix as they were proposed by Haralick. Using stepwise variable selection, a subset of four characteristics were selected and used for the description and classification of each image field. The selected characteristics profile was used for grading the specimen with the multiparameter statistical method of multiple logistic discrimination analysis. The subset of these characteristics provided 87% correct grading of the specimens. The addition of any of the remaining characteristics did not improve significantly the diagnostic ability of the method. This study demonstrated that texture analysis techniques could provide valuable grading decision support to the pathologists, concerning prostate cancer prognosis. © 2008 Copyright SPIE - The International Society for Optical Engineering. en
heal.journalName Progress in Biomedical Optics and Imaging - Proceedings of SPIE en
dc.identifier.doi 10.1117/12.763377 en
dc.identifier.volume 6859 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής