dc.contributor.author |
Chryssoverghi, I |
en |
dc.contributor.author |
Coletsos, J |
en |
dc.contributor.author |
Kokkinis, B |
en |
dc.date.accessioned |
2014-03-01T02:51:52Z |
|
dc.date.available |
2014-03-01T02:51:52Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/35701 |
|
dc.subject |
Control Problem |
en |
dc.subject |
Distributed Optimization |
en |
dc.subject |
Gradient Projection Method |
en |
dc.subject |
Numerical Solution |
en |
dc.subject |
Optimal Control Problem |
en |
dc.subject |
Optimal Method |
en |
dc.subject |
Parabolic Partial Differential Equation |
en |
dc.subject |
State Constraints |
en |
dc.title |
Classical and Relaxed Optimization Methods for Nonlinear Parabolic Optimal Control Problems |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/978-3-642-12535-5_28 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/978-3-642-12535-5_28 |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
A distributed optimal control problem is considered, for systems defined by parabolic partial differential equations. The state equations are nonlinear w.r.t. the state and the control, and the state constraints and cost depend also on the state gradient. The problem is first formulated in the classical and in the relaxed form. Various necessary conditions for optimality are given for both |
en |
heal.journalName |
Large-Scale Scientific Computing |
en |
dc.identifier.doi |
10.1007/978-3-642-12535-5_28 |
en |