dc.contributor.author |
Charalampidis, A |
en |
dc.contributor.author |
Papavassilopoulos, G |
en |
dc.date.accessioned |
2014-03-01T02:51:52Z |
|
dc.date.available |
2014-03-01T02:51:52Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/35703 |
|
dc.subject |
Estimation Error |
en |
dc.subject |
extended kalman filter |
en |
dc.subject |
Nonlinear Estimation |
en |
dc.subject |
Nonlinear Filter |
en |
dc.subject |
Nonlinear System |
en |
dc.subject |
Particle Filter |
en |
dc.subject |
State Estimation |
en |
dc.subject |
unscented kalman filter |
en |
dc.subject |
kalman filter |
en |
dc.subject |
sampling importance resampling |
en |
dc.title |
Comparison of standard and modified recursive state estimation techniques for nonlinear systems |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/MED.2009.5164528 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/MED.2009.5164528 |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
This paper deals with recursive state estimation for nonlinear systems. A new set of sigma-points for the unscented Kalman filter is proposed as well as a way to substitute a nonlinear output with a linear one. The importance of the function of the state which must be estimated is also illustrated and the need for taking it into account when |
en |
heal.journalName |
Mediterranean Conference on Control and Automation |
en |
dc.identifier.doi |
10.1109/MED.2009.5164528 |
en |