dc.contributor.author |
Lalos, C |
en |
dc.contributor.author |
Anagnostopoulos, V |
en |
dc.contributor.author |
Konstanteli, K |
en |
dc.contributor.author |
Varvarigou, T |
en |
dc.date.accessioned |
2014-03-01T02:51:53Z |
|
dc.date.available |
2014-03-01T02:51:53Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/35717 |
|
dc.subject |
Computer Vision |
en |
dc.subject |
IT Adoption |
en |
dc.subject |
Machine Learning |
en |
dc.subject |
Particle Filter |
en |
dc.subject |
Patient Monitoring |
en |
dc.subject |
Visual Tracking |
en |
dc.subject |
Histograms of Oriented Gradients |
en |
dc.subject |
Probabilistic Principal Component Analysis |
en |
dc.subject |
rao blackwellized particle filter |
en |
dc.title |
Hybrid tracking approach for assistive environments |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1145/1579114.1579178 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1145/1579114.1579178 |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
Camera based supervision is a critical component for patient monitoring in assistive environments. However, visual tracking still remains one of the biggest challenges in the area computer vision although it has been extensively studied during the previous decades. It this paper we propose a hybrid Rao -- Blackwellzed particle filter that combines two efficient, well-known tracking techniques with an innovative |
en |
heal.journalName |
International Conference on Pervasive Technologies Related to Assistive Environments |
en |
dc.identifier.doi |
10.1145/1579114.1579178 |
en |