dc.contributor.author |
Huang, E |
en |
dc.contributor.author |
Antoniou, C |
en |
dc.contributor.author |
Wen, Y |
en |
dc.contributor.author |
Ben-Akiva, M |
en |
dc.contributor.author |
Lopes, J |
en |
dc.contributor.author |
Bento, J |
en |
dc.date.accessioned |
2014-03-01T02:51:53Z |
|
dc.date.available |
2014-03-01T02:51:53Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/35727 |
|
dc.subject |
Dynamic Traffic Assignment |
en |
dc.subject |
Empirical Validation |
en |
dc.subject |
Root Mean Square Error |
en |
dc.subject |
Sensor Fusion |
en |
dc.subject |
Simulation and Modeling |
en |
dc.subject |
State Estimation |
en |
dc.subject |
Data Fusion |
en |
dc.subject |
Pattern Search |
en |
dc.subject |
Real Time |
en |
dc.title |
Real-time multi-sensor multi-source network data fusion using dynamic traffic assignment models |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/ITSC.2009.5309859 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ITSC.2009.5309859 |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
This paper presents a model-based data fusion framework that allows systematic fusing of multi-sensor multi-source traffic network data at real-time. Using simulation-based Dynamic Traffic Assignment (DTA) models, the framework seeks to minimize the inconsistencies between observed network data and the model estimates using a variant of the Hooke-Jeeves Pattern Search. An empirical validation is provided on the Brisa A5 Inter-City |
en |
heal.journalName |
International Conference on Intelligent Transportation |
en |
dc.identifier.doi |
10.1109/ITSC.2009.5309859 |
en |