dc.contributor.author |
Kyriakongonas, AP |
en |
dc.contributor.author |
Papazoglou, VJ |
en |
dc.date.accessioned |
2014-03-01T02:51:54Z |
|
dc.date.available |
2014-03-01T02:51:54Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/35737 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-70349313277&partnerID=40&md5=a0edc6a135bc8a68e9d9aeb2105ffbed |
en |
dc.subject.other |
316L austenitic stainless steel |
en |
dc.subject.other |
3D numerical model |
en |
dc.subject.other |
AISI 316 |
en |
dc.subject.other |
Butt welded joint |
en |
dc.subject.other |
Finite element analysis |
en |
dc.subject.other |
High temperature |
en |
dc.subject.other |
High temperature gradient |
en |
dc.subject.other |
Mechanical material properties |
en |
dc.subject.other |
Model development |
en |
dc.subject.other |
Multi-pass |
en |
dc.subject.other |
Phase Change |
en |
dc.subject.other |
Physical phenomena |
en |
dc.subject.other |
Temperature dependent |
en |
dc.subject.other |
Thermo-mechanical analysis |
en |
dc.subject.other |
Three-dimensional (3D) numerical simulations |
en |
dc.subject.other |
Weld pool |
en |
dc.subject.other |
Welding process |
en |
dc.subject.other |
Austenite |
en |
dc.subject.other |
Austenitic stainless steel |
en |
dc.subject.other |
Butt welding |
en |
dc.subject.other |
Computer software |
en |
dc.subject.other |
Electric welding |
en |
dc.subject.other |
Mechanical properties |
en |
dc.subject.other |
Metal analysis |
en |
dc.subject.other |
Ocean structures |
en |
dc.subject.other |
Steel |
en |
dc.subject.other |
Stresses |
en |
dc.subject.other |
Welded steel structures |
en |
dc.subject.other |
Welds |
en |
dc.subject.other |
Three dimensional |
en |
dc.title |
3D numerical model of austenitic stainless steel 316L multipass butt welding and comparison with experimental results |
en |
heal.type |
conferenceItem |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
A three-dimensional (3D) numerical simulation model of the multi-pass butt welding of AISI 316L austenitic stainless steel plates is developed with the use of finite element analysis, based on the ANSYS® software. The uncoupled thermo-mechanical analysis of the model performed aims at reliably predicting the residual stresses field and deformation due to welding. All the major physical phenomena associated with the welding process, such as heat conduction and convection, heat radiation, and convection heat losses are taken into account in the model development. The thermal and mechanical material properties are introduced as temperature dependent functions, due to the high temperatures of the weld pool and the high temperature gradients that are present during the welding process. During austenitic stainless steel welding any phase changes occurring are considered negligible and are thus ignored in the model. The model's accuracy is evaluated by comparing it with the experimental results from a multi-pass 316L austenitic stainless steel butt welded joint. © 2009 Taylor & Francis Group, London. |
en |
heal.journalName |
Proceedings of MARSTRUCT 2009, 2nd International Conference on Marine Structures-Analysis and Design of Marine Structures |
en |
dc.identifier.spage |
371 |
en |
dc.identifier.epage |
376 |
en |