HEAL DSpace

A comprehensive insight in the MOCVD of aluminum through interaction between reactive transport modeling and targeted growth experiments

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Xenidou, TC en
dc.contributor.author Prud'homme, N en
dc.contributor.author Vahlas, C en
dc.contributor.author Markatos, NC en
dc.contributor.author Boudouvis, AG en
dc.date.accessioned 2014-03-01T02:51:54Z
dc.date.available 2014-03-01T02:51:54Z
dc.date.issued 2009 en
dc.identifier.issn 19385862 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/35739
dc.subject.other Aluminum film en
dc.subject.other Computational Fluid Dynamics software en
dc.subject.other Dimethylethylamine alane en
dc.subject.other Experimental measurements en
dc.subject.other Growth mechanisms en
dc.subject.other Growth process en
dc.subject.other Heterogeneous chemical reaction en
dc.subject.other MOCVD en
dc.subject.other Operating parameters en
dc.subject.other Predictive models en
dc.subject.other Process output en
dc.subject.other Rate profiles en
dc.subject.other Reaction orders en
dc.subject.other Reactive transport modeling en
dc.subject.other Reactive transport models en
dc.subject.other Simulation result en
dc.subject.other Spatial uniformity en
dc.subject.other Subatmospheric pressures en
dc.subject.other Substrate temperature en
dc.subject.other Activation energy en
dc.subject.other Aluminum en
dc.subject.other Atmospheric movements en
dc.subject.other Atmospheric pressure en
dc.subject.other Computational fluid dynamics en
dc.subject.other Film growth en
dc.subject.other Grafting (chemical) en
dc.subject.other Synthesis (chemical) en
dc.subject.other Transport properties en
dc.subject.other Chemical vapor deposition en
dc.title A comprehensive insight in the MOCVD of aluminum through interaction between reactive transport modeling and targeted growth experiments en
heal.type conferenceItem en
heal.identifier.primary 10.1149/1.3207580 en
heal.identifier.secondary http://dx.doi.org/10.1149/1.3207580 en
heal.publicationDate 2009 en
heal.abstract Growth experiments and reactive transport modeling were combined to formulate a comprehensive predictive model for aluminum growth from dimethylethylamine alane. The growth-rate profile was experimentally investigated as a function of substrate temperature. The reactive transport model, built under the computational fluid dynamics software PHOENICS, was used to reproduce the experimental measurements and to contribute to the understanding of the aluminum growth process, under sub-atmospheric pressure conditions. The growth mechanism of aluminum films was based on well established in literature reaction order and activation energy of homogeneous and heterogeneous chemical reactions. The reactive transport model was used further to investigate the effect of some key operating parameters on the process output. Simulation results are suggestive of modifications in the operating parameters that could enhance the growth rate and the spatial uniformity of the film thickness. © The Electrochemical Society. en
heal.journalName ECS Transactions en
dc.identifier.doi 10.1149/1.3207580 en
dc.identifier.volume 25 en
dc.identifier.issue 8 PART 1 en
dc.identifier.spage 99 en
dc.identifier.epage 106 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής