HEAL DSpace

A fast convergent modal-expansion of the wave potential with application to the hydrodynamic and hydroelastic analysis of floating bodies in general bathymetry

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Belibassakis, KA en
dc.contributor.author Athanassoulis, GA en
dc.date.accessioned 2014-03-01T02:51:54Z
dc.date.available 2014-03-01T02:51:54Z
dc.date.issued 2009 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/35742
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-77953118887&partnerID=40&md5=ae2057ba946e57146bd74c06aa2e5177 en
dc.subject.other Additional mode en
dc.subject.other Cnoidal wave en
dc.subject.other Elastic body en
dc.subject.other Evanescent mode en
dc.subject.other Flexural rigidities en
dc.subject.other Floating bodies en
dc.subject.other Floating structures en
dc.subject.other Free surfaces en
dc.subject.other General bathymetry en
dc.subject.other Hydro-elastic analysis en
dc.subject.other Hydrodynamic and hydroelastic analysis en
dc.subject.other Ice sheet en
dc.subject.other Intermediate depths en
dc.subject.other Mass distribution en
dc.subject.other Non-linear en
dc.subject.other Non-Linearity en
dc.subject.other Nonlinear travelling waves en
dc.subject.other Nonlinear water waves en
dc.subject.other Numerical example en
dc.subject.other Numerical investigations en
dc.subject.other Numerical solution en
dc.subject.other Series expansion en
dc.subject.other Thin plate en
dc.subject.other Variable bathymetry en
dc.subject.other Variable thickness en
dc.subject.other Variational principles en
dc.subject.other Vertical structures en
dc.subject.other Wave potentials en
dc.subject.other Wavefields en
dc.subject.other Arctic engineering en
dc.subject.other Bathymetry en
dc.subject.other Hydrodynamics en
dc.subject.other Nonlinear equations en
dc.subject.other Numerical analysis en
dc.subject.other Oceanography en
dc.subject.other Offshore structures en
dc.subject.other Rigid structures en
dc.subject.other Thickness control en
dc.subject.other Variational techniques en
dc.subject.other Water waves en
dc.subject.other Waves en
dc.subject.other Hydroelasticity en
dc.title A fast convergent modal-expansion of the wave potential with application to the hydrodynamic and hydroelastic analysis of floating bodies in general bathymetry en
heal.type conferenceItem en
heal.publicationDate 2009 en
heal.abstract A non-linear coupled-mode system of horizontal equations has been derived with the aid of Luke's (1967) variational principle, modelling the evolution of nonlinear water waves in intermediate depth and over a general bathymetry Athanassoulis & Belibassakis (2002, 2008). Following previous work by the authors in the case of linearised water waves (Athanassoulis & Belibassakis 1999), the vertical structure of the wave field is exactly represented by means of a local-mode series expansion of the wave potential. This series contains the usual propagating and evanescent modes, plus two additional modes, the free-surface mode and the sloping-bottom mode, enabling to consistently treat the non-vertical end-conditions at the free-surface and the bottom boundaries. The coupled-mode system fully accounts for the effects of non-linearity and dispersion. The main feature of this approach that a small number of modes (of the order of 5-6) are enough for the precise numerical solution, provided that the two new modes (the free-surface and the sloping-bottom ones) are included in the local-mode series. The consistent coupled-mode system has been applied to numerical investigation of families of steady nonlinear travelling wave solutions in constant depth (Athanassoulis & Belibassakis 2007) showing good agreement with known solutions both in the Stokes and the cnoidal wave regimes. In the present work we focus on the hydroelastic analysis of floating bodies lying over variable bathymetry regions, with application to the non-linear scattering of water waves by large floating structures (of VLFS type or ice sheets) characterised by variable thickness (draft), flexural rigidity and mass distributions, modelled as thin plates of variable thickness, extending previous approaches (see, e.g., Porter & Porter 2004, Belibassakis & Athanassoulis 2005, 2006, Bennets et al 2007). Numerical examples are presented, showing that useful results can be obtained for the analysis of large floating elastic bodies or structures very efficiently by keeping only a few terms in the expansion. Ideas for extending our approach to 3D are also discussed. Copyright © 2009 by ASME. en
heal.journalName Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE en
dc.identifier.volume 6 en
dc.identifier.spage 469 en
dc.identifier.epage 476 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής