HEAL DSpace

A hybrid beam hysteretic element for inelastic analysis of plane frames

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Koumousis, VK en
dc.contributor.author Leontari, KG en
dc.date.accessioned 2014-03-01T02:51:54Z
dc.date.available 2014-03-01T02:51:54Z
dc.date.issued 2009 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/35743
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-84859142160&partnerID=40&md5=fc9214eacf82d33756c5c89cc294c682 en
dc.subject Bouc-wen model en
dc.subject Hybrid method en
dc.subject Hysteretic damping en
dc.subject Non-linear system identification en
dc.subject.other Beam elements en
dc.subject.other Bouc Wen model en
dc.subject.other Earthquake-resistant design en
dc.subject.other Efficient computation en
dc.subject.other Element level en
dc.subject.other Entire system en
dc.subject.other First-order differentials en
dc.subject.other Hybrid beam en
dc.subject.other Hybrid forms en
dc.subject.other Hybrid method en
dc.subject.other Hysteretic behaviour en
dc.subject.other Hysteretic damping en
dc.subject.other Incremental method en
dc.subject.other Inelastic analysis en
dc.subject.other Internal forces en
dc.subject.other Linear differential equation en
dc.subject.other Material non-linearity en
dc.subject.other Nodal displacement en
dc.subject.other Non-linear system identification en
dc.subject.other Numerical example en
dc.subject.other Runge-Kutta en
dc.subject.other State-space en
dc.subject.other Earthquake resistance en
dc.subject.other Equations of motion en
dc.subject.other Evolutionary algorithms en
dc.subject.other Runge Kutta methods en
dc.subject.other Stiffness en
dc.subject.other Stiffness matrix en
dc.subject.other Hysteresis en
dc.title A hybrid beam hysteretic element for inelastic analysis of plane frames en
heal.type conferenceItem en
heal.publicationDate 2009 en
heal.abstract A hybrid, smooth, hysteretic beam element is proposed based on Bouc-Wen model suitable for the inelastic analysis of plane frames. The actual hysteretic behaviour is addressed directly to express the overall behaviour of plane frames, which is of primal importance in earthquake resistant design of structures. Hysteretic forces are introduced at the element level and the equations of motion are deduced in hybrid form, where the elastic part is handled in terms of nodal displacements, while the inelastic in terms of unknown elemental internal forces. The element behaviour is cast in matrix form extending the formulation of direct stiffness method, by adding a hysteresis matrix first at the element and then at the structural level. This allows for a systematic formation of a set of linear differential equations of motion and the associated set of non-linear first-order differential evolution equations describing the hysteretic behaviour. The entire system is converted into a state-space form and the solution is determined using a Runge-Kutta integrator. In this formulation the linearity of equilibrium and compatibility requirements at the structural level is preserved, while the material non-linearity is treated at the element level for all the elements of the structure. Thus, linearization, which is inherent in the standard incremental method of FEM, is avoided leading to a more efficient computation and significantly fewer elements for the same accuracy of results. A numerical example is presented which is compared with an existing solution to illustrate the capabilities of the method. © CIMNE. en
heal.journalName Computational Plasticity X - Fundamentals and Applications en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής