HEAL DSpace

A new morphological segmentation algorithm for biomedical imaging applications

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Gorpas, D en
dc.contributor.author Maragos, P en
dc.contributor.author Yova, D en
dc.date.accessioned 2014-03-01T02:51:55Z
dc.date.available 2014-03-01T02:51:55Z
dc.date.issued 2009 en
dc.identifier.issn 0277786X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/35749
dc.subject Biomedical image segmentation en
dc.subject Contrast enhancement en
dc.subject Image gradient en
dc.subject Morphological sequential filtering en
dc.subject Regional minima en
dc.subject Watershed transformation en
dc.subject.other Biomedical image segmentation en
dc.subject.other Contrast enhancement en
dc.subject.other Image gradient en
dc.subject.other Morphological sequential filtering en
dc.subject.other Regional minima en
dc.subject.other Watershed transformation en
dc.subject.other Algorithms en
dc.subject.other Computer vision en
dc.subject.other Digital image storage en
dc.subject.other Image acquisition en
dc.subject.other Imaging systems en
dc.subject.other Landforms en
dc.subject.other Medical imaging en
dc.subject.other Sequential switching en
dc.subject.other Watersheds en
dc.subject.other Image segmentation en
dc.title A new morphological segmentation algorithm for biomedical imaging applications en
heal.type conferenceItem en
heal.identifier.primary 10.1117/12.805574 en
heal.identifier.secondary 72510C en
heal.identifier.secondary http://dx.doi.org/10.1117/12.805574 en
heal.publicationDate 2009 en
heal.abstract Images of high geometrical complexity are found in various applications in the fields of image processing and computer vision. Medical imaging is such an application, where the processing of digitized images reveals vital information for the therapeutic or diagnostic algorithms. However, the segmentation of these images has been proved to be one of the most challenging topics in modern computer vision algorithms. The light interaction with tissues and the geometrical complexity with the tangent objects are among the most common reasons that many segmentation techniques nowadays are strictly related to specific applications and image acquisition protocols. In this paper a sophisticated segmentation algorithm is introduced that succeeds into overcoming the application dependent accuracy levels. This algorithm is based on morphological sequential filtering, combined with a watershed transformation. The results on various biomedical test images present increased accuracy, which is independent of the image acquisition protocol. This method can provide researchers with a valuable tool, which makes the classification or the follow-up faster, more accurate and objective. © 2009 SPIE. en
heal.journalName Proceedings of SPIE - The International Society for Optical Engineering en
dc.identifier.doi 10.1117/12.805574 en
dc.identifier.volume 7251 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής