dc.contributor.author |
Triantafyllou, SP |
en |
dc.contributor.author |
Koumousis, VK |
en |
dc.date.accessioned |
2014-03-01T02:51:55Z |
|
dc.date.available |
2014-03-01T02:51:55Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/35750 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-84859119877&partnerID=40&md5=a211400b8ab8e3c6531228c627c5b2d9 |
en |
dc.subject |
Bouc wen |
en |
dc.subject |
Finite element |
en |
dc.subject |
Hysteresis |
en |
dc.subject |
Plane stress |
en |
dc.subject.other |
Bouc wen |
en |
dc.subject.other |
Compatibility equation |
en |
dc.subject.other |
Computational costs |
en |
dc.subject.other |
Constitutive relations |
en |
dc.subject.other |
Equilibrium equation |
en |
dc.subject.other |
Evolution equations |
en |
dc.subject.other |
Finite Element |
en |
dc.subject.other |
Governing equations |
en |
dc.subject.other |
Internal variables |
en |
dc.subject.other |
Kinematic hardening |
en |
dc.subject.other |
Nonlinear statics |
en |
dc.subject.other |
Nonlinear time history analysis |
en |
dc.subject.other |
Plane strain problem |
en |
dc.subject.other |
Plane strains |
en |
dc.subject.other |
Plane stress |
en |
dc.subject.other |
Solution approach |
en |
dc.subject.other |
Step-by-step |
en |
dc.subject.other |
Triangular elements |
en |
dc.subject.other |
Computational mechanics |
en |
dc.subject.other |
Hardening |
en |
dc.subject.other |
Hysteresis |
en |
dc.subject.other |
Finite element method |
en |
dc.title |
A new triangular element for the analysis of plane stress / plane strain plasticity problems |
en |
heal.type |
conferenceItem |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
In this work, a new plane stress element is proposed suitable for the nonlinear static and dynamic analysis of plane stress / plane strain problems. The triangular element formulation for the elastic case is extended by implicitly defining a hysteretic internal variable, subjected to an evolution equation of the Bouc-Wen type with kinematic hardening. Solutions are obtained by simultaneously solving the three sets of governing equations of the structure, namely the global equilibrium equations, global compatibility equations and local constitutive equations. A Livermore solver is implemented. Contrary to the usual step-by-step solution approaches, following the proposed formulation linearization of the constitutive relations is avoided. The combined use of the proposed element together with the solution approach implemented reduces significantly the computational cost of a nonlinear time history analysis, while at the same time improves the accuracy of the method. An example is presented which demonstrate the efficiency of the proposed method and the accuracy of the developed finite element. © CIMNE. |
en |
heal.journalName |
Computational Plasticity X - Fundamentals and Applications |
en |