HEAL DSpace

Aggregation bias in traffic flow time series: The effects of ignoring it

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Vlahogianni, EI en
dc.contributor.author Karlaftis, MG en
dc.date.accessioned 2014-03-01T02:51:56Z
dc.date.available 2014-03-01T02:51:56Z
dc.date.issued 2009 en
dc.identifier.issn 14746670 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/35763
dc.subject Information analysis en
dc.subject Long-term memory en
dc.subject Road traffic en
dc.subject Stationarity en
dc.subject Statistical analysis en
dc.subject.other Data aggregation en
dc.subject.other Data resolutions en
dc.subject.other Data series en
dc.subject.other Fractional dynamics en
dc.subject.other Intelligent traffic management en
dc.subject.other Long memories en
dc.subject.other Long term memory en
dc.subject.other Road traffic en
dc.subject.other Spurious oscillations en
dc.subject.other Stationarity en
dc.subject.other Traffic flow en
dc.subject.other Traffic volumes en
dc.subject.other Traveler information systems en
dc.subject.other Data flow analysis en
dc.subject.other Highway traffic control en
dc.subject.other Time series en
dc.subject.other Time series analysis en
dc.subject.other Traffic surveys en
dc.subject.other Information management en
dc.title Aggregation bias in traffic flow time series: The effects of ignoring it en
heal.type conferenceItem en
heal.identifier.primary 10.3182/20090902-3-US-2007.0041 en
heal.identifier.secondary http://dx.doi.org/10.3182/20090902-3-US-2007.0041 en
heal.publicationDate 2009 en
heal.abstract Current ITS infrastructure provides the ability to simultaneously capture and monitor a variety of transportation data in very fine intervals. However, in order for the data to be analyzed and integrated to the different intelligent traffic management and traveler information systems, the optimum data resolution should be selected. In many transportation studies it is suggested that data should be aggregated in order to avoid the effects of noise and spurious oscillations. In the present paper, we analyze the effect of data aggregation on the fractional dynamics of traffic volume and occupancy, as well as the information degradation between the original and the aggregated data. Results indicate that aggregation may suppress the long memory characteristics of traffic flow. Moreover, uncertainty associated with the aggregated data with respect to the original data series increases with coarser data resolutions. © 2009 IFAC. en
heal.journalName IFAC Proceedings Volumes (IFAC-PapersOnline) en
dc.identifier.doi 10.3182/20090902-3-US-2007.0041 en
dc.identifier.spage 462 en
dc.identifier.epage 466 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής