HEAL DSpace

Hybrid tracking approach for assistive environments

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Lalos, C en
dc.contributor.author Anagnostopoulos, V en
dc.contributor.author Varvarigou, T en
dc.date.accessioned 2014-03-01T02:52:00Z
dc.date.available 2014-03-01T02:52:00Z
dc.date.issued 2009 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/35807
dc.subject Probabilistic principal components analysis en
dc.subject Rao-blackwell particle filter en
dc.subject.other Assistive en
dc.subject.other Behavior recognition en
dc.subject.other Color observation en
dc.subject.other Critical component en
dc.subject.other Hybrid tracking en
dc.subject.other Initial stages en
dc.subject.other Machine learning techniques en
dc.subject.other Particle filter en
dc.subject.other Principal components analysis en
dc.subject.other Representation method en
dc.subject.other Tracking performance en
dc.subject.other Tracking techniques en
dc.subject.other Visual Tracking en
dc.subject.other Air filters en
dc.subject.other Computer vision en
dc.subject.other Learning algorithms en
dc.subject.other Nonlinear filtering en
dc.subject.other Patient monitoring en
dc.subject.other Principal component analysis en
dc.title Hybrid tracking approach for assistive environments en
heal.type conferenceItem en
heal.identifier.primary 10.1145/1579114.1579178 en
heal.identifier.secondary 64 en
heal.identifier.secondary http://dx.doi.org/10.1145/1579114.1579178 en
heal.publicationDate 2009 en
heal.abstract Camera based supervision is a critical component for patient monitoring in assistive environments. However, visual tracking still remains one of the biggest challenges in the area computer vision although it has been extensively studied during the previous decades. It this paper we propose a hybrid Rao- Blackwellzed particle filter that combines two efficient, well-known tracking techniques with an innovative color observation representation method in order to improve the overall tracking performance. This representation is combined with color and edge representation to obtain improved tracking efficiency. Furthermore, the global edge description template for the edge representation (histogram of oriented gradients) was obtained using a machine learning technique. Initial experiments show that the principle behind the proposed algorithm is sound, yielding good results and thus allowing its adoption as an initial stage for patient behavior recognition. Copyright 2009 ACM. en
heal.journalName ACM International Conference Proceeding Series en
dc.identifier.doi 10.1145/1579114.1579178 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής