dc.contributor.author |
Gorpas, D |
en |
dc.contributor.author |
Yova, D |
en |
dc.date.accessioned |
2014-03-01T02:52:00Z |
|
dc.date.available |
2014-03-01T02:52:00Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.issn |
16057422 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/35811 |
|
dc.subject |
Alternating sequential filtering |
en |
dc.subject |
Contrast enhancement |
en |
dc.subject |
Image segmentation |
en |
dc.subject |
Morphological filtering |
en |
dc.subject |
Watershed transformation |
en |
dc.subject.other |
Acquisition systems |
en |
dc.subject.other |
Alternating sequential filtering |
en |
dc.subject.other |
Biomedical applications |
en |
dc.subject.other |
Biomedical images |
en |
dc.subject.other |
Biomedical imaging |
en |
dc.subject.other |
Complex geometries |
en |
dc.subject.other |
Contrast enhancement |
en |
dc.subject.other |
False detections |
en |
dc.subject.other |
Intensity profiles |
en |
dc.subject.other |
Morphological filtering |
en |
dc.subject.other |
Regions of interest |
en |
dc.subject.other |
Sequential filtering |
en |
dc.subject.other |
Tissue interactions |
en |
dc.subject.other |
Watershed transformation |
en |
dc.subject.other |
Watershed transformations |
en |
dc.subject.other |
Digital image storage |
en |
dc.subject.other |
Landforms |
en |
dc.subject.other |
Metal recovery |
en |
dc.subject.other |
Sequential switching |
en |
dc.subject.other |
Watersheds |
en |
dc.subject.other |
Image segmentation |
en |
dc.title |
Image segmentation for biomedical applications based on alternating sequential filtering and watershed transformation |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1117/12.831715 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1117/12.831715 |
en |
heal.identifier.secondary |
73700F |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
One of the major challenges in biomedical imaging is the extraction of quantified information from the acquired images. Light and tissue interaction leads to the acquisition of images that present inconsistent intensity profiles and thus the accurate identification of the regions of interest is a rather complicated process. On the other hand, the complex geometries and the tangent objects that very often are present in the acquired images, lead to either false detections or to the merging, shrinkage or expansion of the regions of interest. In this paper an algorithm, which is based on alternating sequential filtering and watershed transformation, is proposed for the segmentation of biomedical images. This algorithm has been tested over two applications, each one based on different acquisition system, and the results illustrate its accuracy in segmenting the regions of interest. © 2009 SPIE-OSA. |
en |
heal.journalName |
Progress in Biomedical Optics and Imaging - Proceedings of SPIE |
en |
dc.identifier.doi |
10.1117/12.831715 |
en |
dc.identifier.volume |
7370 |
en |