HEAL DSpace

Image segmentation for biomedical applications based on alternating sequential filtering and watershed transformation

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Gorpas, D en
dc.contributor.author Yova, D en
dc.date.accessioned 2014-03-01T02:52:00Z
dc.date.available 2014-03-01T02:52:00Z
dc.date.issued 2009 en
dc.identifier.issn 16057422 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/35811
dc.subject Alternating sequential filtering en
dc.subject Contrast enhancement en
dc.subject Image segmentation en
dc.subject Morphological filtering en
dc.subject Watershed transformation en
dc.subject.other Acquisition systems en
dc.subject.other Alternating sequential filtering en
dc.subject.other Biomedical applications en
dc.subject.other Biomedical images en
dc.subject.other Biomedical imaging en
dc.subject.other Complex geometries en
dc.subject.other Contrast enhancement en
dc.subject.other False detections en
dc.subject.other Intensity profiles en
dc.subject.other Morphological filtering en
dc.subject.other Regions of interest en
dc.subject.other Sequential filtering en
dc.subject.other Tissue interactions en
dc.subject.other Watershed transformation en
dc.subject.other Watershed transformations en
dc.subject.other Digital image storage en
dc.subject.other Landforms en
dc.subject.other Metal recovery en
dc.subject.other Sequential switching en
dc.subject.other Watersheds en
dc.subject.other Image segmentation en
dc.title Image segmentation for biomedical applications based on alternating sequential filtering and watershed transformation en
heal.type conferenceItem en
heal.identifier.primary 10.1117/12.831715 en
heal.identifier.secondary http://dx.doi.org/10.1117/12.831715 en
heal.identifier.secondary 73700F en
heal.publicationDate 2009 en
heal.abstract One of the major challenges in biomedical imaging is the extraction of quantified information from the acquired images. Light and tissue interaction leads to the acquisition of images that present inconsistent intensity profiles and thus the accurate identification of the regions of interest is a rather complicated process. On the other hand, the complex geometries and the tangent objects that very often are present in the acquired images, lead to either false detections or to the merging, shrinkage or expansion of the regions of interest. In this paper an algorithm, which is based on alternating sequential filtering and watershed transformation, is proposed for the segmentation of biomedical images. This algorithm has been tested over two applications, each one based on different acquisition system, and the results illustrate its accuracy in segmenting the regions of interest. © 2009 SPIE-OSA. en
heal.journalName Progress in Biomedical Optics and Imaging - Proceedings of SPIE en
dc.identifier.doi 10.1117/12.831715 en
dc.identifier.volume 7370 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής