dc.contributor.author |
Kavvadas, M |
en |
dc.contributor.author |
Karlaftis, M |
en |
dc.contributor.author |
Fortsakis, P |
en |
dc.contributor.author |
Stylianidi, E |
en |
dc.date.accessioned |
2014-03-01T02:52:06Z |
|
dc.date.available |
2014-03-01T02:52:06Z |
|
dc.date.issued |
2009 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/35841 |
|
dc.subject |
Eurocode 7 |
en |
dc.subject |
Monte Carlo simulation |
en |
dc.subject |
Probabilistic analysis |
en |
dc.subject |
Slope stability |
en |
dc.subject.other |
Cohesive materials |
en |
dc.subject.other |
Conservative value |
en |
dc.subject.other |
Design codes |
en |
dc.subject.other |
Deterministic design |
en |
dc.subject.other |
Eurocodes |
en |
dc.subject.other |
Field investigation |
en |
dc.subject.other |
Geotechnical |
en |
dc.subject.other |
Geotechnical designs |
en |
dc.subject.other |
Ground parameters |
en |
dc.subject.other |
Monte Carlo Simulation |
en |
dc.subject.other |
Parametric analysis |
en |
dc.subject.other |
Probabilistic analysis |
en |
dc.subject.other |
Probability of failure |
en |
dc.subject.other |
Soil slopes |
en |
dc.subject.other |
Undrained conditions |
en |
dc.subject.other |
Civil engineering |
en |
dc.subject.other |
Geotechnical engineering |
en |
dc.subject.other |
Probability |
en |
dc.subject.other |
Safety factor |
en |
dc.subject.other |
Slope stability |
en |
dc.subject.other |
Soil mechanics |
en |
dc.subject.other |
Monte Carlo methods |
en |
dc.title |
Probabilistic analysis in slope stability |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.3233/978-1-60750-031-5-1650 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.3233/978-1-60750-031-5-1650 |
en |
heal.publicationDate |
2009 |
en |
heal.abstract |
Geotechnical design is, perhaps, the civil engineering subject most dominated by uncertainty. Although partly due to limited field investigations, the main reason of this uncertainty is the highly heterogeneous and anisotropic nature of ground materials. Deterministic design methods as required by design codes, attempt to account for ground uncertainty by adopting conservative values of ground parameters and relatively large safety factors. This paper performs probabilistic analyses of soil slopes using Monte Carlo simulation in order to investigate the effect of these assumptions on the calculated probability of failure of the slopes. For slopes in saturated cohesive materials under undrained conditions an analytical solution is proposed while for drained conditions parametric analyses are performed. It is shown that slopes designed according to Eurocode 7 (EN1997-1) correspond to probabilities of failure up to 12%. Based on the results of these analyses, diagrams are proposed for the estimation of the probability of failure as a function of the geometrical, geotechnical and support parameters of the slope. © 2009 IOS Press. |
en |
heal.journalName |
Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering: The Academia and Practice of Geotechnical Engineering |
en |
dc.identifier.doi |
10.3233/978-1-60750-031-5-1650 |
en |
dc.identifier.volume |
2 |
en |
dc.identifier.spage |
1650 |
en |
dc.identifier.epage |
1653 |
en |