HEAL DSpace

Two polynomial time algorithms for the metro-line crossing minimization problem

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Argyriou, E en
dc.contributor.author Bekos, MA en
dc.contributor.author Kaufmann, M en
dc.contributor.author Symvonis, A en
dc.date.accessioned 2014-03-01T02:52:13Z
dc.date.available 2014-03-01T02:52:13Z
dc.date.issued 2009 en
dc.identifier.issn 03029743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/35873
dc.subject.other Embedded graphs en
dc.subject.other IMPROVE-A en
dc.subject.other Line crossings en
dc.subject.other Main tasks en
dc.subject.other Metro maps en
dc.subject.other Polynomial-time algorithms en
dc.subject.other Public transportation networks en
dc.subject.other Crossings (pipe and cable) en
dc.subject.other Drawing (graphics) en
dc.subject.other Polynomial approximation en
dc.subject.other Graph theory en
dc.title Two polynomial time algorithms for the metro-line crossing minimization problem en
heal.type conferenceItem en
heal.identifier.primary 10.1007/978-3-642-00219-9-33 en
heal.identifier.secondary http://dx.doi.org/10.1007/978-3-642-00219-9-33 en
heal.publicationDate 2009 en
heal.abstract The metro-line crossing minimization (MLCM) problem was recently introduced as a response to the problem of drawing metro maps or public transportation networks, in general. According to this problem, we are given a planar, embedded graph G∈=∈(V,E) and a set L of simple paths on G, called lines. The main task is to place the lines on G, so that the number of crossings among pairs of lines is minimized. Our main contribution is two polynomial time algorithms. The first solves the general case of the MLCM problem, where the lines that traverse a particular vertex of G are allowed to use any side of it to either ""enter"" or ""exit"", assuming that the endpoints of the lines are located at vertices of degree one. The second one solves more efficiently the restricted case, where only the left and the right side of each vertex can be used. To the best of our knowledge, this is the first time where the general case of the MLCM problem is solved. Previous work was devoted to the restricted case of the MLCM problem under the additional assumption that the endpoints of the lines are either the topmost or the bottommost in their corresponding vertices, i.e., they are either on top or below the lines that pass through the vertex. Even for this case, we improve a known result of Asquith et al. from O(|E|5/2|L|3) to O(|V|(|E|∈ +∈|L|)). © 2009 Springer Berlin Heidelberg. en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
dc.identifier.doi 10.1007/978-3-642-00219-9-33 en
dc.identifier.volume 5417 LNCS en
dc.identifier.spage 336 en
dc.identifier.epage 347 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής