dc.contributor.author |
Papadopoulos, S |
en |
dc.contributor.author |
Zigkolis, C |
en |
dc.contributor.author |
Tolias, G |
en |
dc.contributor.author |
Kalantidis, Y |
en |
dc.contributor.author |
Mylonas, P |
en |
dc.contributor.author |
Kompatsiaris, Y |
en |
dc.contributor.author |
Vakali, A |
en |
dc.date.accessioned |
2014-03-01T02:52:31Z |
|
dc.date.available |
2014-03-01T02:52:31Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/35897 |
|
dc.subject |
Community Detection |
en |
dc.subject |
Content Based Image Retrieval |
en |
dc.subject |
Image Clustering |
en |
dc.subject |
Image Similarity |
en |
dc.subject |
Indexing Terms |
en |
dc.subject |
Information Overload |
en |
dc.subject |
Photo Sharing |
en |
dc.subject |
User Generated Content |
en |
dc.title |
Image clustering through community detection on hybrid image similarity graphs |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/ICIP.2010.5653478 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ICIP.2010.5653478 |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
The wide adoption of photo sharing applications such as Flickr© and the massive amounts of user-generated content uploaded to them raises an information overload issue for users. An established technique to overcome such an overload is to cluster images into groups based on their similarity and then use the derived clusters to assist navigation and browsing of the collection. In |
en |
heal.journalName |
Image Processing, IEEE International Conference |
en |
dc.identifier.doi |
10.1109/ICIP.2010.5653478 |
en |