dc.contributor.author |
Papavassiliou, V |
en |
dc.contributor.author |
Katsouros, V |
en |
dc.contributor.author |
Carayannis, G |
en |
dc.date.accessioned |
2014-03-01T02:52:32Z |
|
dc.date.available |
2014-03-01T02:52:32Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/35920 |
|
dc.subject.other |
Binary morphology |
en |
dc.subject.other |
Data sets |
en |
dc.subject.other |
Document image segmentation |
en |
dc.subject.other |
Efficient method |
en |
dc.subject.other |
Handwriting segmentation |
en |
dc.subject.other |
Handwritten document |
en |
dc.subject.other |
Line segmentation |
en |
dc.subject.other |
Line structures |
en |
dc.subject.other |
Morphological approach |
en |
dc.subject.other |
Morphological operations |
en |
dc.subject.other |
Overlapping regions |
en |
dc.subject.other |
Printed documents |
en |
dc.subject.other |
Processing machines |
en |
dc.subject.other |
Rank-order filtering |
en |
dc.subject.other |
Text lines |
en |
dc.subject.other |
Vertical direction |
en |
dc.subject.other |
Digital image storage |
en |
dc.subject.other |
Feedforward neural networks |
en |
dc.subject.other |
Image segmentation |
en |
dc.subject.other |
Mathematical morphology |
en |
dc.subject.other |
Character recognition |
en |
dc.title |
A morphological approach for text-line segmentation in handwritten documents |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/ICFHR.2010.11 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ICFHR.2010.11 |
en |
heal.identifier.secondary |
5693494 |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
Document image segmentation to text lines is a critical stage towards unconstrained handwritten document recognition. Although morphological operations proved to be effective in processing machine-printed documents for several issues, similar methods for unconstraint-handwritten documents lack accuracy. We propose an efficient method based on binary morphology for text-line segmentation in such documents. The basic steps of our approach are: a) subsampling and binary rank order filtering to enhance the text-line structures and b) applying dilations and (p,q)-th generalized foreground rank openings successively to join close and horizontally overlapping regions while preventing a merge in the vertical direction. The method tested on the benchmarking dataset of the ICDAR07 handwriting segmentation contest and show remarkable results. © 2010 IEEE. |
en |
heal.journalName |
Proceedings - 12th International Conference on Frontiers in Handwriting Recognition, ICFHR 2010 |
en |
dc.identifier.doi |
10.1109/ICFHR.2010.11 |
en |
dc.identifier.spage |
19 |
en |
dc.identifier.epage |
24 |
en |