HEAL DSpace

A morphological approach for text-line segmentation in handwritten documents

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Papavassiliou, V en
dc.contributor.author Katsouros, V en
dc.contributor.author Carayannis, G en
dc.date.accessioned 2014-03-01T02:52:32Z
dc.date.available 2014-03-01T02:52:32Z
dc.date.issued 2010 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/35920
dc.subject.other Binary morphology en
dc.subject.other Data sets en
dc.subject.other Document image segmentation en
dc.subject.other Efficient method en
dc.subject.other Handwriting segmentation en
dc.subject.other Handwritten document en
dc.subject.other Line segmentation en
dc.subject.other Line structures en
dc.subject.other Morphological approach en
dc.subject.other Morphological operations en
dc.subject.other Overlapping regions en
dc.subject.other Printed documents en
dc.subject.other Processing machines en
dc.subject.other Rank-order filtering en
dc.subject.other Text lines en
dc.subject.other Vertical direction en
dc.subject.other Digital image storage en
dc.subject.other Feedforward neural networks en
dc.subject.other Image segmentation en
dc.subject.other Mathematical morphology en
dc.subject.other Character recognition en
dc.title A morphological approach for text-line segmentation in handwritten documents en
heal.type conferenceItem en
heal.identifier.primary 10.1109/ICFHR.2010.11 en
heal.identifier.secondary http://dx.doi.org/10.1109/ICFHR.2010.11 en
heal.identifier.secondary 5693494 en
heal.publicationDate 2010 en
heal.abstract Document image segmentation to text lines is a critical stage towards unconstrained handwritten document recognition. Although morphological operations proved to be effective in processing machine-printed documents for several issues, similar methods for unconstraint-handwritten documents lack accuracy. We propose an efficient method based on binary morphology for text-line segmentation in such documents. The basic steps of our approach are: a) subsampling and binary rank order filtering to enhance the text-line structures and b) applying dilations and (p,q)-th generalized foreground rank openings successively to join close and horizontally overlapping regions while preventing a merge in the vertical direction. The method tested on the benchmarking dataset of the ICDAR07 handwriting segmentation contest and show remarkable results. © 2010 IEEE. en
heal.journalName Proceedings - 12th International Conference on Frontiers in Handwriting Recognition, ICFHR 2010 en
dc.identifier.doi 10.1109/ICFHR.2010.11 en
dc.identifier.spage 19 en
dc.identifier.epage 24 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής