dc.contributor.author |
Ibarra-Castanedo, C |
en |
dc.contributor.author |
Avdelidis, NP |
en |
dc.contributor.author |
Grenier, M |
en |
dc.contributor.author |
Maldague, X |
en |
dc.contributor.author |
Bendada, A |
en |
dc.date.accessioned |
2014-03-01T02:52:33Z |
|
dc.date.available |
2014-03-01T02:52:33Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
0277786X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/35929 |
|
dc.subject |
active infrared thermography |
en |
dc.subject |
composites |
en |
dc.subject |
pulsed thermography |
en |
dc.subject |
signal processing |
en |
dc.subject.other |
Active infrared thermography |
en |
dc.subject.other |
Active thermography |
en |
dc.subject.other |
composites |
en |
dc.subject.other |
Data analysis |
en |
dc.subject.other |
Defect characterization |
en |
dc.subject.other |
Defect detection and characterization |
en |
dc.subject.other |
Different domains |
en |
dc.subject.other |
High-order |
en |
dc.subject.other |
Impact damages |
en |
dc.subject.other |
Inspection process |
en |
dc.subject.other |
Machine vision |
en |
dc.subject.other |
Non destructive evaluation |
en |
dc.subject.other |
Principal Components |
en |
dc.subject.other |
Processing technique |
en |
dc.subject.other |
pulsed thermography |
en |
dc.subject.other |
Signal processing technique |
en |
dc.subject.other |
Signal transformation |
en |
dc.subject.other |
Temporal Data |
en |
dc.subject.other |
Computer vision |
en |
dc.subject.other |
Damage detection |
en |
dc.subject.other |
Data reduction |
en |
dc.subject.other |
Defects |
en |
dc.subject.other |
Frequency domain analysis |
en |
dc.subject.other |
Machine components |
en |
dc.subject.other |
Metadata |
en |
dc.subject.other |
Principal component analysis |
en |
dc.subject.other |
Signal detection |
en |
dc.subject.other |
Signal processing |
en |
dc.subject.other |
Thermography (temperature measurement) |
en |
dc.subject.other |
Thermography (imaging) |
en |
dc.title |
Active thermography signal processing techniques for defect detection and characterization on composite materials |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1117/12.850733 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1117/12.850733 |
en |
heal.identifier.secondary |
76610O |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
Active thermography has been extensively investigated in the past few years for the nondestructive evaluation of different types of materials. Composites in particular have received considerable attention given that active thermography has shown to be well suited for the detection and characterization of most kinds of defects typically found in these materials such as impact damage, delaminations, disbonds and inclusions. Signal processing is a necessary step of the inspection process, especially if defect characterization is required. A wide variety of techniques have been developed from the classical thermal-based techniques to signal transformation algorithms (adapted from the area of machine vision) on which temporal data is transformed to a different domain (frequency, Hough, principal components, Laplace, high-order moments, etc.) with the purpose of simplifying data analysis. In this paper, a review of some of these processing techniques is presented and exemplified using a Kevlar® panel and a GLARE specimen. © 2010 Copyright SPIE - The International Society for Optical Engineering. |
en |
heal.journalName |
Proceedings of SPIE - The International Society for Optical Engineering |
en |
dc.identifier.doi |
10.1117/12.850733 |
en |
dc.identifier.volume |
7661 |
en |