dc.contributor.author |
Anagnostopoulos, I |
en |
dc.contributor.author |
Bartzas, A |
en |
dc.contributor.author |
Soudris, D |
en |
dc.date.accessioned |
2014-03-01T02:52:34Z |
|
dc.date.available |
2014-03-01T02:52:34Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
03029743 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/35937 |
|
dc.subject.other |
3D meshes |
en |
dc.subject.other |
3D networks |
en |
dc.subject.other |
Application-Specific |
en |
dc.subject.other |
Buffer sizing |
en |
dc.subject.other |
Complex applications |
en |
dc.subject.other |
Critical issues |
en |
dc.subject.other |
Design constraints |
en |
dc.subject.other |
DSP application |
en |
dc.subject.other |
IP core |
en |
dc.subject.other |
Network on chip |
en |
dc.subject.other |
NoC architectures |
en |
dc.subject.other |
NoC design |
en |
dc.subject.other |
Novel techniques |
en |
dc.subject.other |
On-chip interconnection |
en |
dc.subject.other |
Peak temperatures |
en |
dc.subject.other |
Performance penalties |
en |
dc.subject.other |
Power Consumption |
en |
dc.subject.other |
Power delivery |
en |
dc.subject.other |
Power-aware routing |
en |
dc.subject.other |
Systematic methodology |
en |
dc.subject.other |
Temperature reduction |
en |
dc.subject.other |
Electric power transmission |
en |
dc.subject.other |
Interconnection networks |
en |
dc.subject.other |
Network architecture |
en |
dc.subject.other |
Routers |
en |
dc.subject.other |
Technical presentations |
en |
dc.subject.other |
Three dimensional |
en |
dc.subject.other |
Time measurement |
en |
dc.subject.other |
Timing circuits |
en |
dc.subject.other |
VLSI circuits |
en |
dc.subject.other |
Design |
en |
dc.title |
Application-specific temperature reduction systematic methodology for 2D and 3D networks-on-chip |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/978-3-642-11802-9_13 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/978-3-642-11802-9_13 |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
Network-on-Chip (NoC), a new SoC paradigm, has been proposed as a solution to mitigate complex on-chip interconnection problems. NoC architectures are able to accommodate a large number of IP cores in the same chip implementing a set of complex applications. Power consumption is a critical issue in interconnection network in NoC design, driven by power-related design constraints, such as thermal and power delivery design. In this work, we introduce a systematic methodology for NoC temperature reduction consisting of novel techniques: i) application independent power-aware routing algorithms; and ii) application-specific platform optimizations, such as buffer sizing. The methodology achieves significant peak temperature reduction. The effectiveness of the proposed approach is evaluated both on 2D and 3D mesh topologies employing real DSP applications. A temperature reduction of 13°C and 22°C for 2D and 3D NoCs, respectively, on average, is achieved without any performance penalty. © 2010 Springer Berlin Heidelberg. |
en |
heal.journalName |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
en |
dc.identifier.doi |
10.1007/978-3-642-11802-9_13 |
en |
dc.identifier.volume |
5953 LNCS |
en |
dc.identifier.spage |
86 |
en |
dc.identifier.epage |
95 |
en |