HEAL DSpace

Classical and relaxed optimization methods for nonlinear parabolic optimal control problems

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Chryssoverghi, I en
dc.contributor.author Coletsos, J en
dc.contributor.author Kokkinis, B en
dc.date.accessioned 2014-03-01T02:52:36Z
dc.date.available 2014-03-01T02:52:36Z
dc.date.issued 2010 en
dc.identifier.issn 03029743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/35951
dc.subject.other Classical control en
dc.subject.other Descent method en
dc.subject.other Distributed optimal control problems en
dc.subject.other Gradient projection methods en
dc.subject.other Numerical example en
dc.subject.other Numerical solution en
dc.subject.other Optimal control problem en
dc.subject.other Optimality en
dc.subject.other Optimization method en
dc.subject.other Parabolic partial differential equations en
dc.subject.other Relaxation theory en
dc.subject.other Relaxed control en
dc.subject.other State constraints en
dc.subject.other State equations en
dc.subject.other Control en
dc.subject.other Differential equations en
dc.subject.other Numerical analysis en
dc.subject.other Numerical methods en
dc.subject.other Optimization en
dc.subject.other Nonlinear equations en
dc.title Classical and relaxed optimization methods for nonlinear parabolic optimal control problems en
heal.type conferenceItem en
heal.identifier.primary 10.1007/978-3-642-12535-5_28 en
heal.identifier.secondary http://dx.doi.org/10.1007/978-3-642-12535-5_28 en
heal.publicationDate 2010 en
heal.abstract A distributed optimal control problem is considered, for systems defined by parabolic partial differential equations. The state equations are nonlinear w.r.t. the state and the control, and the state constraints and cost depend also on the state gradient. The problem is first formulated in the classical and in the relaxed form. Various necessary conditions for optimality are given for both problems. Two methods are then proposed for the numerical solution of these problems. The first is a penalized gradient projection method generating classical controls, and the second is a penalized conditional descent method generating relaxed controls. Using relaxation theory, the behavior in the limit of sequences constructed by these methods is examined. Finally, numerical examples are given. © 2010 Springer-Verlag Berlin Heidelberg. en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
dc.identifier.doi 10.1007/978-3-642-12535-5_28 en
dc.identifier.volume 5910 LNCS en
dc.identifier.spage 247 en
dc.identifier.epage 255 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής