dc.contributor.author | Kaiktsis, L | en |
dc.contributor.author | Triantafyllou, GS | en |
dc.date.accessioned | 2014-03-01T02:52:37Z | |
dc.date.available | 2014-03-01T02:52:37Z | |
dc.date.issued | 2010 | en |
dc.identifier.issn | 0277027X | en |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/35959 | |
dc.relation.uri | http://www.scopus.com/inward/record.url?eid=2-s2.0-80155180576&partnerID=40&md5=e2af73d9fc34e708883360f00a35995a | en |
dc.subject | In-line oscillation | en |
dc.subject | Spectral element method | en |
dc.subject | Vortex-induced vibrations | en |
dc.subject.other | Chaotic flows | en |
dc.subject.other | Computational results | en |
dc.subject.other | Computational studies | en |
dc.subject.other | Computed flows | en |
dc.subject.other | Cylinder diameters | en |
dc.subject.other | Cylinder oscillations | en |
dc.subject.other | Excitation frequency | en |
dc.subject.other | Flow dynamics | en |
dc.subject.other | Flow resonance | en |
dc.subject.other | Higher harmonics | en |
dc.subject.other | In-line | en |
dc.subject.other | In-line oscillations | en |
dc.subject.other | Oscillation amplitude | en |
dc.subject.other | Oscillation frequency | en |
dc.subject.other | Spectral element method | en |
dc.subject.other | Strouhal frequencies | en |
dc.subject.other | Subharmonics | en |
dc.subject.other | Two-dimensional flow | en |
dc.subject.other | Vortex induced vibration | en |
dc.subject.other | Vortex pattern | en |
dc.subject.other | Vortex street | en |
dc.subject.other | Circular cylinders | en |
dc.subject.other | Flow visualization | en |
dc.subject.other | Identification (control systems) | en |
dc.subject.other | Oscillating cylinders | en |
dc.subject.other | Pressure vessels | en |
dc.subject.other | Reynolds number | en |
dc.subject.other | Vortex flow | en |
dc.subject.other | Wakes | en |
dc.subject.other | Oscillating flow | en |
dc.title | Computational study of flow resonances and forces on a cylinder vibrating in-line to a steady flow | en |
heal.type | conferenceItem | en |
heal.publicationDate | 2010 | en |
heal.abstract | We present computational results of the flow dynamics and forces on a circular cylinder oscillating in-line with respect to a steady uniform stream. A wide range of oscillation frequencies is considered, from 0.5fs to 3fs, where fs is the natural Strouhal frequency of the Karman street. The oscillation amplitude is varied up to half the cylinder diameter. The Reynolds number value is 180, corresponding to two-dimensional flow. Simulations utilize a spectral element method. The computed flow states are characterized based on processed lift signals, and flow visualization. We find that the response of the flow is very sensitive to variations of the cylinder oscillation frequency. At low oscillation frequency, the lift signal and vortex patterns remain regular for low oscillation amplitudes, i.e. correspond to a 2S type of vortex street, and become complex at high oscillation amplitudes. Cylinder oscillation at the Strouhal frequency gives a window of chaotic flow at intermediate amplitudes, while at higher amplitudes 2S wakes are generated, with the sub-harmonic fs/2 and the higher harmonic 3fs/2 dominating the lift spectrum. Oscillation at twice the Strouhal frequency results in symmetric shedding, for oscillation amplitudes close to 30% of the cylinder diameter, and higher. Finally, at an oscillation frequency equal to three times the Strouhal frequency, the flow dynamics is very rich, characterized by ""islands"" of symmetric and asymmetric shedding at increasing oscillation amplitude. Chaotic flow is obtained only when the excitation frequency is equal to fs or to 3fs. Copyright © 2010 by ASME. | en |
heal.journalName | American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP | en |
dc.identifier.volume | 4 | en |
dc.identifier.spage | 193 | en |
dc.identifier.epage | 200 | en |
Αρχεία | Μέγεθος | Μορφότυπο | Προβολή |
---|---|---|---|
Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο. |