dc.contributor.author |
Fragkogiannis, G |
en |
dc.contributor.author |
Apostolopoulos, G |
en |
dc.contributor.author |
Stamataki, S |
en |
dc.date.accessioned |
2014-03-01T02:52:38Z |
|
dc.date.available |
2014-03-01T02:52:38Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/35964 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-78249283215&partnerID=40&md5=e5b5a2f4a0b3c911f1a318797990ae3d |
en |
dc.subject.other |
Critical parameter |
en |
dc.subject.other |
Dry density |
en |
dc.subject.other |
Electrical resistivity |
en |
dc.subject.other |
Electrical resistivity tomography |
en |
dc.subject.other |
Empirical correlations |
en |
dc.subject.other |
Engineering applications |
en |
dc.subject.other |
Experimental determination |
en |
dc.subject.other |
Geotechnical data |
en |
dc.subject.other |
Grain size |
en |
dc.subject.other |
Mineral composition |
en |
dc.subject.other |
Mineralogical compositions |
en |
dc.subject.other |
Moisture contents |
en |
dc.subject.other |
Near-surface |
en |
dc.subject.other |
Over the airs |
en |
dc.subject.other |
Pore space |
en |
dc.subject.other |
Presence of water |
en |
dc.subject.other |
Soil thermal conductivity |
en |
dc.subject.other |
Soil types |
en |
dc.subject.other |
Electric conductivity |
en |
dc.subject.other |
Engineering exhibitions |
en |
dc.subject.other |
Engineers |
en |
dc.subject.other |
Grain size and shape |
en |
dc.subject.other |
Moisture |
en |
dc.subject.other |
Moisture determination |
en |
dc.subject.other |
Petroleum engineering |
en |
dc.subject.other |
Thermal conductivity |
en |
dc.subject.other |
Thermoanalysis |
en |
dc.subject.other |
Tomography |
en |
dc.subject.other |
Soils |
en |
dc.title |
Correlation of thermal conductivity and electrical resistivity of soil - For near surface geothermal applications |
en |
heal.type |
conferenceItem |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
Soil thermal conductivity (k) is a critical parameter in various engineering applications, where heat transfer takes place and depends on numerous factors such as mineralogical composition, grain size of soil and physical properties (moisture, dry density, saturation). Same factors have also an influence on the electrical resistivity of soil (ρ). This work presents an experimental determination of soil thermal conductivity and electrical resistivity, in various soil types with different grain size and mineral composition, in terms of variable moisture content and dry density. The change of thermal (k) and electrical (inverse of resistivity, ρ) conductivity values in terms of the increasing saturation is interpreted with the increasing presence of water over the air in the pore space that facilitates heat and current transportation. The study of thermal conductivity and electrical resistivity variation according to the fluctuation of physical properties of soils, can lead to the qualitatively and quantitatively correlation between kand ρ. Such an empirical correlation can be used to estimate the thermal conductivity of subsurface, by applying electrical resistivity tomography in combination with geotechnical data. At the present time, it is a subject of further research exploiting various models of k and φ. |
en |
heal.journalName |
Society of Petroleum Engineers - 72nd European Association of Geoscientists and Engineers Conference and Exhibition 2010 - Incorporating SPE EUROPEC 2010 |
en |
dc.identifier.volume |
6 |
en |
dc.identifier.spage |
3989 |
en |
dc.identifier.epage |
3993 |
en |