HEAL DSpace

Correspondence between intrinsic mode functions and slow flows

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Lee, YS en
dc.contributor.author Tsakirtzis, S en
dc.contributor.author Vakakis, AF en
dc.contributor.author Bergman, LA en
dc.contributor.author McFarland, DM en
dc.date.accessioned 2014-03-01T02:52:38Z
dc.date.available 2014-03-01T02:52:38Z
dc.date.issued 2010 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/35965
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-77953750776&partnerID=40&md5=c01894cd760ac3f43ae9afe1a1a905c3 en
dc.subject.other Analyticity en
dc.subject.other Coupled oscillators en
dc.subject.other Empirical mode decomposition en
dc.subject.other Flow analysis en
dc.subject.other Flow model en
dc.subject.other Intrinsic mode functions en
dc.subject.other Mathematical expressions en
dc.subject.other Non-linear system identification en
dc.subject.other Non-parametric en
dc.subject.other Oscillatory mode en
dc.subject.other Physical systems en
dc.subject.other Physics-based en
dc.subject.other Slow flow en
dc.subject.other Strongly nonlinear en
dc.subject.other Structural systems en
dc.subject.other Theoretical foundations en
dc.subject.other Time domain en
dc.subject.other Two-degree-of-freedom en
dc.subject.other Decomposition en
dc.subject.other Oscillators (electronic) en
dc.subject.other Signal analysis en
dc.subject.other Structures (built objects) en
dc.subject.other Time series en
dc.subject.other Time domain analysis en
dc.title Correspondence between intrinsic mode functions and slow flows en
heal.type conferenceItem en
heal.publicationDate 2010 en
heal.abstract We study the correspondence between analytical and empirical slow-flow analyses, which will form a basis for a time-domain nonparametric nonlinear system identification method. Given a sufficiently dense set of sensors, measured time series recorded throughout a mechanical or structural system contains all information regarding the dynamics of that system. Empirical mode decomposition (EMD) is a useful tool for decomposing the measured time series in terms of intrinsic mode functions (IMFs), which are oscillatory modes embedded in the data that fully reproduce the time series. The equivalence of responses of the analytical slow-flow models and the dominant IMFs derived from EMD provides a physics-based theoretical foundation for EMD, which currently is performed formally, in an ad hoc fashion. First deriving appropriate mathematical expressions governing the empirical slow flows and based on analyticity conditions, we demonstrate only close correspondence between analytical and empirical slow flows in a physical system that can be modeled as a two-degree-of-freedom strongly nonlinear coupled oscillators. Copyright © 2009 by ASME. en
heal.journalName Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 2009, DETC2009 en
dc.identifier.volume 1 en
dc.identifier.issue PART A en
dc.identifier.spage 661 en
dc.identifier.epage 670 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής