dc.contributor.author |
Binucci, C |
en |
dc.contributor.author |
Brandes, U |
en |
dc.contributor.author |
Di Battista, G |
en |
dc.contributor.author |
Didimo, W |
en |
dc.contributor.author |
Gaertler, M |
en |
dc.contributor.author |
Palladino, P |
en |
dc.contributor.author |
Patrignani, M |
en |
dc.contributor.author |
Symvonis, A |
en |
dc.contributor.author |
Zweig, K |
en |
dc.date.accessioned |
2014-03-01T02:52:39Z |
|
dc.date.available |
2014-03-01T02:52:39Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
03029743 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/35972 |
|
dc.subject.other |
Area requirement |
en |
dc.subject.other |
Competitive ratio |
en |
dc.subject.other |
Data stream model |
en |
dc.subject.other |
Graph drawing |
en |
dc.subject.other |
Grid drawing |
en |
dc.subject.other |
Layout model |
en |
dc.subject.other |
Off-line algorithm |
en |
dc.subject.other |
Output quality |
en |
dc.subject.other |
Quality criteria |
en |
dc.subject.other |
Streaming model |
en |
dc.subject.other |
Time spent |
en |
dc.subject.other |
Computation theory |
en |
dc.subject.other |
Drawing (graphics) |
en |
dc.subject.other |
Edge detection |
en |
dc.title |
Drawing trees in a streaming model |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/978-3-642-11805-0_28 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/978-3-642-11805-0_28 |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
We introduce a data stream model of computation for Graph Drawing, where a source produces a graph one edge at a time. When an edge is produced, it is immediately drawn and its drawing can not be altered. The drawing has an image persistence, that controls the lifetime of edges. If the persistence is k, an edge remains in the drawing for the time spent by the source to generate k edges, then it fades away. In this model we study the area requirement of planar straight-line grid drawings of trees, with different streaming orders, layout models, and quality criteria. We assess the output quality of the presented algorithms by computing the competitive ratio with respect to the best known offline algorithms. © 2010 Springer-Verlag. |
en |
heal.journalName |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
en |
dc.identifier.doi |
10.1007/978-3-642-11805-0_28 |
en |
dc.identifier.volume |
5849 LNCS |
en |
dc.identifier.spage |
292 |
en |
dc.identifier.epage |
303 |
en |