HEAL DSpace

Drawing trees in a streaming model

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Binucci, C en
dc.contributor.author Brandes, U en
dc.contributor.author Di Battista, G en
dc.contributor.author Didimo, W en
dc.contributor.author Gaertler, M en
dc.contributor.author Palladino, P en
dc.contributor.author Patrignani, M en
dc.contributor.author Symvonis, A en
dc.contributor.author Zweig, K en
dc.date.accessioned 2014-03-01T02:52:39Z
dc.date.available 2014-03-01T02:52:39Z
dc.date.issued 2010 en
dc.identifier.issn 03029743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/35972
dc.subject.other Area requirement en
dc.subject.other Competitive ratio en
dc.subject.other Data stream model en
dc.subject.other Graph drawing en
dc.subject.other Grid drawing en
dc.subject.other Layout model en
dc.subject.other Off-line algorithm en
dc.subject.other Output quality en
dc.subject.other Quality criteria en
dc.subject.other Streaming model en
dc.subject.other Time spent en
dc.subject.other Computation theory en
dc.subject.other Drawing (graphics) en
dc.subject.other Edge detection en
dc.title Drawing trees in a streaming model en
heal.type conferenceItem en
heal.identifier.primary 10.1007/978-3-642-11805-0_28 en
heal.identifier.secondary http://dx.doi.org/10.1007/978-3-642-11805-0_28 en
heal.publicationDate 2010 en
heal.abstract We introduce a data stream model of computation for Graph Drawing, where a source produces a graph one edge at a time. When an edge is produced, it is immediately drawn and its drawing can not be altered. The drawing has an image persistence, that controls the lifetime of edges. If the persistence is k, an edge remains in the drawing for the time spent by the source to generate k edges, then it fades away. In this model we study the area requirement of planar straight-line grid drawings of trees, with different streaming orders, layout models, and quality criteria. We assess the output quality of the presented algorithms by computing the competitive ratio with respect to the best known offline algorithms. © 2010 Springer-Verlag. en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
dc.identifier.doi 10.1007/978-3-642-11805-0_28 en
dc.identifier.volume 5849 LNCS en
dc.identifier.spage 292 en
dc.identifier.epage 303 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής