HEAL DSpace

Dynamic modeling for land mobile navigation using low-cost inertial sensors and least squares support vector machine learning

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Frangos, K en
dc.contributor.author Kealy, A en
dc.contributor.author Gikas, V en
dc.contributor.author Hasnur, A en
dc.date.accessioned 2014-03-01T02:52:39Z
dc.date.available 2014-03-01T02:52:39Z
dc.date.issued 2010 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/35974
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-79959985869&partnerID=40&md5=9aea2618dcae64fea452cf9198790491 en
dc.subject.other Adaptive dynamics en
dc.subject.other Apriori knowledge en
dc.subject.other Computational overheads en
dc.subject.other Dual frequency en
dc.subject.other Dynamic modeling en
dc.subject.other Filtering method en
dc.subject.other Filtering technique en
dc.subject.other Gaussian white noise en
dc.subject.other GPS receivers en
dc.subject.other Inertial sensor en
dc.subject.other Land mobile en
dc.subject.other Land vehicles en
dc.subject.other Learning techniques en
dc.subject.other Least squares support vector machines en
dc.subject.other Linear dynamics en
dc.subject.other Local minimums en
dc.subject.other Low costs en
dc.subject.other Low-cost sensors en
dc.subject.other Melbourne , Australia en
dc.subject.other Navigation solution en
dc.subject.other Non-Linearity en
dc.subject.other Overfitting en
dc.subject.other Processing technique en
dc.subject.other Random dynamics en
dc.subject.other Real-world tests en
dc.subject.other Standard Kalman filters en
dc.subject.other State prediction en
dc.subject.other Structural risk minimization en
dc.subject.other SVM theory en
dc.subject.other System Dynamics en
dc.subject.other Test data en
dc.subject.other Training data en
dc.subject.other Transition phase en
dc.subject.other Algorithms en
dc.subject.other Equipment testing en
dc.subject.other Global positioning system en
dc.subject.other Kalman filters en
dc.subject.other Navigation en
dc.subject.other Neural networks en
dc.subject.other Sensors en
dc.subject.other Support vector machines en
dc.subject.other System theory en
dc.subject.other Time series en
dc.subject.other Time series analysis en
dc.subject.other Vehicles en
dc.subject.other White noise en
dc.subject.other Dynamic models en
dc.title Dynamic modeling for land mobile navigation using low-cost inertial sensors and least squares support vector machine learning en
heal.type conferenceItem en
heal.publicationDate 2010 en
heal.abstract Traditional algorithms used to determine a vehicle's navigation state (e.g. Kalman filter) has as one of its prerequisites, a model that describes how the vehicle is expected to move over time. The accuracy of this dynamic model is important, as it allows for optimization of the navigation solution, particularly when dealing with low cost sensors which typically exhibit significant errors and biases. Unfortunately, for land vehicles, apriori knowledge of the true dynamic model is very difficult to achieve by virtue of the random dynamic variations that exist and that there is no general navigation case. This situation is even further complicated in many navigation applications where non-linearity and demanding environments characterize the motion and challenge the assumptions of most filtering methods (e.g. linear dynamics behaviour and Gaussian white noise). To overcome these problems, a new approach has been developed to determine the correct dynamic model for the navigation platform; this approach is based on Support Vector Machines (SVM). SVM is a relatively new learning technique in the field of machine learning and is based on structural risk minimization (SRM) which makes the technique statistically robust. SVM addresses and overcomes the majority of problems faced by typical neural networks such as local minima, over-fitting or over-training, etc. In this research, Least Squares Support Vector Machine (LS-SVM); a sub case of the SVM theory is utilised as a means of maintaining the ratio between overall performance and computational overheads. The approach taken here is to identify the true system dynamics by learning from a time series analysis of a set of training data. A mathematical model which describes the true system dynamics regression is then created from this analysis. This model can then be applied to predicting the behaviour of the navigation platform. In terms of filtering techniques, this is the first step for the formulation of an adaptive dynamic model for state prediction, replacing the standard Kalman filter's transition phase. In this paper, the LS-SVM algorithm used in this research for dynamic modeling is detailed. In addition, practical results that describe the performance of this algorithm will be presented. These results have been generated using a navigation test bed established in Melbourne, Australia. The test data was captured on a land vehicle fitted with one tactical grade IMU, six low cost MEMS IMU sensors and an array of high performance dual frequency GPS receivers. The real-world tests, data captured, analysis, processing techniques and dynamic modeling results will be described and used to demonstrate the performance of the LS-SVM algorithm. en
heal.journalName 23rd International Technical Meeting of the Satellite Division of the Institute of Navigation 2010, ION GNSS 2010 en
dc.identifier.volume 2 en
dc.identifier.spage 1687 en
dc.identifier.epage 1696 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής