dc.contributor.author |
Ouzounoglou, AN |
en |
dc.contributor.author |
Economopoulos, TL |
en |
dc.contributor.author |
Asvestas, PA |
en |
dc.contributor.author |
Matsopoulos, GK |
en |
dc.date.accessioned |
2014-03-01T02:52:41Z |
|
dc.date.available |
2014-03-01T02:52:41Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
16800737 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/35989 |
|
dc.subject |
distinctive points extraction |
en |
dc.subject |
Fingerprint image correspondence |
en |
dc.subject |
matching score |
en |
dc.subject |
self organizing maps |
en |
dc.subject.other |
distinctive points extraction |
en |
dc.subject.other |
Equal error rate |
en |
dc.subject.other |
Fingerprint images |
en |
dc.subject.other |
Fingerprint matching |
en |
dc.subject.other |
Main process |
en |
dc.subject.other |
Matching score |
en |
dc.subject.other |
Neurotechnology |
en |
dc.subject.other |
Biochemical engineering |
en |
dc.subject.other |
Biometrics |
en |
dc.subject.other |
Image processing |
en |
dc.subject.other |
Medical computing |
en |
dc.subject.other |
Self organizing maps |
en |
dc.title |
Fingerprint matching with self organizing maps |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/978-3-642-13039-7_77 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/978-3-642-13039-7_77 |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
In this paper, an automatic scheme for the identification of fingerprint images is presented. The scheme consists of two main processes: the extraction of distinctive points only from the template fingerprint image and the detection of their corresponding ones (if they exist) on the input fingerprint image using an implementation of the Self Organizing Maps. The correspondence quality is evaluated using a proper metric, which determines the matching between the two images. The proposed scheme was tested on fingerprint image pairs subject to known and unknown transformations using the VeriFinger-Sample-Data-Base of NeuroTechnology. The overall performance for fingerprints originated from the same and different fingers was 94.12% in terms of the Equal Error Rate. © 2010 International Federation for Medical and Biological Engineering. |
en |
heal.journalName |
IFMBE Proceedings |
en |
dc.identifier.doi |
10.1007/978-3-642-13039-7_77 |
en |
dc.identifier.volume |
29 |
en |
dc.identifier.spage |
307 |
en |
dc.identifier.epage |
310 |
en |