dc.contributor.author |
Zannis, TC |
en |
dc.contributor.author |
Hountalas, DT |
en |
dc.contributor.author |
Yfantis, EA |
en |
dc.contributor.author |
Papagiannakis, RG |
en |
dc.contributor.author |
Levendis, YA |
en |
dc.date.accessioned |
2014-03-01T02:52:42Z |
|
dc.date.available |
2014-03-01T02:52:42Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/36003 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-77953195715&partnerID=40&md5=8eeca93f184eab3ea2b2e94eefe7ecba |
en |
dc.subject.other |
Brake specific fuel consumption |
en |
dc.subject.other |
Combustion air |
en |
dc.subject.other |
Combustion characteristics |
en |
dc.subject.other |
Combustion efficiencies |
en |
dc.subject.other |
Combustion parameters |
en |
dc.subject.other |
DI diesel engine |
en |
dc.subject.other |
Effect of oxygen |
en |
dc.subject.other |
Engine load |
en |
dc.subject.other |
Engine simulation models |
en |
dc.subject.other |
Equivalence ratios |
en |
dc.subject.other |
Fuel jet |
en |
dc.subject.other |
Ignition delays |
en |
dc.subject.other |
In-cylinder mixing |
en |
dc.subject.other |
Intake air |
en |
dc.subject.other |
Naturally aspirated |
en |
dc.subject.other |
NO concentration |
en |
dc.subject.other |
NOx Emissions |
en |
dc.subject.other |
Oxygen content |
en |
dc.subject.other |
Oxygen mole-fraction |
en |
dc.subject.other |
Pollutant emission |
en |
dc.subject.other |
Power enhancement |
en |
dc.subject.other |
Power out put |
en |
dc.subject.other |
Soot emissions |
en |
dc.subject.other |
Theoretical investigations |
en |
dc.subject.other |
Unburned hydrocarbons |
en |
dc.subject.other |
Air engines |
en |
dc.subject.other |
Air intakes |
en |
dc.subject.other |
Brakes |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Engine cylinders |
en |
dc.subject.other |
Engines |
en |
dc.subject.other |
Fuel consumption |
en |
dc.subject.other |
Fueling |
en |
dc.subject.other |
Hydrocarbons |
en |
dc.subject.other |
Ignition |
en |
dc.subject.other |
Nitric oxide |
en |
dc.subject.other |
Oxygen |
en |
dc.subject.other |
Particulate emissions |
en |
dc.subject.other |
Soot |
en |
dc.subject.other |
Diesel engines |
en |
dc.title |
Intake-air oxygen-enrichment of diesel engines as a power enhancement method and implications on pollutant emissions |
en |
heal.type |
conferenceItem |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
Increasing the in-cylinder oxygen availability of diesel engines is an effective method to improve combustion efficiency and to reduce particulate emissions. Past work on oxygen-enrichment of the intake air, revealed a large decrease of ignition delay, a remarkable decrease of soot emissions as well as reduction of CO and unburned hydrocarbon (HC) emissions while, brake specific fuel consumption (bsfc) remained unaffected or even improved. Moreover, experiments conducted in the past by authors revealed that oxygen-enrichment of the intake air (from 21% to 25% oxygen mole fraction) under high fuelling rates resulted to an increase of brake power output by 10%. However, a considerable increase of NOx emissions was recorded. This manuscript, presents the results of a theoretical investigation that examines the effect of oxygen enrichment of intake air, up to 30%v/v, on the local combustion characteristics, soot and NO concentrations under the following two in-cylinder mixing conditions: (1) lean in-cylinder average fuel/oxygen equivalence ratio (constant fuelling rate) and (2) constant in-cylinder average fuel/oxygen equivalence ratio (increased fuelling rate). A phenomenological engine simulation model is used to shed light into the influence of the oxygen content of combustion air on the distribution of combustion parameters, soot and nitric oxide inside the fuel jet, in all cases considered. Simulations were made for a naturally aspirated single-cylinder DI diesel engine ""Lister LV1"" at 2500 rpm and at various engine loads. The outcome of this theoretical investigation was contrasted with published experimental findings. Copyright © 2009 by ASME. |
en |
heal.journalName |
Proceedings of the ASME Internal Combustion Engine Division Fall Technical Conference 2009 |
en |
dc.identifier.spage |
295 |
en |
dc.identifier.epage |
308 |
en |