HEAL DSpace

On the perspectives opened by right angle crossing drawings

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Angelini, P en
dc.contributor.author Cittadini, L en
dc.contributor.author Di Battista, G en
dc.contributor.author Didimo, W en
dc.contributor.author Frati, F en
dc.contributor.author Kaufmann, M en
dc.contributor.author Symvonis, A en
dc.date.accessioned 2014-03-01T02:52:43Z
dc.date.available 2014-03-01T02:52:43Z
dc.date.issued 2010 en
dc.identifier.issn 03029743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/36021
dc.subject.other Decision problems en
dc.subject.other Degree graphs en
dc.subject.other Embedded graphs en
dc.subject.other NP-hard en
dc.subject.other Planar digraphs en
dc.subject.other Planar embeddings en
dc.subject.other Planar graph en
dc.subject.other Drawing (graphics) en
dc.title On the perspectives opened by right angle crossing drawings en
heal.type conferenceItem en
heal.identifier.primary 10.1007/978-3-642-11805-0_5 en
heal.identifier.secondary http://dx.doi.org/10.1007/978-3-642-11805-0_5 en
heal.publicationDate 2010 en
heal.abstract Right Angle Crossing (RAC) drawings are polyline drawings where each crossing forms four right angles. RAC drawings have been introduced because cognitive experiments provided evidence that increasing the number of crossings does not decrease the readability of the drawing if the edges cross at right angles. We investigate to what extent RAC drawings can help in overcoming the limitations of widely adopted planar graph drawing conventions, providing both positive and negative results. First, we prove that there exist acyclic planar digraphs not admitting any straight-line upward RAC drawing and that the corresponding decision problem is NP-hard. Also, we show digraphs whose straight-line upward RAC drawings require exponential area. Second, we study if RAC drawings allow us to draw bounded-degree graphs with lower curve complexity than the one required by more constrained drawing conventions. We prove that every graph with vertex-degree at most 6 (at most 3) admits a RAC drawing with curve complexity 2 (resp. 1) and with quadratic area. Third, we consider a natural non-planar generalization of planar embedded graphs. Here we give bounds for curve complexity and area different from the ones known for planar embeddings. © 2010 Springer-Verlag. en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
dc.identifier.doi 10.1007/978-3-642-11805-0_5 en
dc.identifier.volume 5849 LNCS en
dc.identifier.spage 21 en
dc.identifier.epage 32 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής