dc.contributor.author |
McHedlidze, T |
en |
dc.contributor.author |
Symvonis, A |
en |
dc.date.accessioned |
2014-03-01T02:52:44Z |
|
dc.date.available |
2014-03-01T02:52:44Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
03029743 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/36024 |
|
dc.subject.other |
Book embedding |
en |
dc.subject.other |
Embeddings |
en |
dc.subject.other |
Worst case |
en |
dc.subject.other |
Drawing (graphics) |
en |
dc.subject.other |
Topology |
en |
dc.title |
On ρ-constrained upward topological book embeddings |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/978-3-642-11805-0_40 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/978-3-642-11805-0_40 |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
Giordano, Liotta and Whitesides [1] developed an algorithm that, given an embedded planar st-digraph and a topological numbering ρ of its vertices, computes in O(n2) time a ρ-constrained upward topological book embedding with at most 2n-4 spine crossings per edge. The number of spine crossings per edge is asymptotically worst case optimal. © 2010 Springer-Verlag. |
en |
heal.journalName |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
en |
dc.identifier.doi |
10.1007/978-3-642-11805-0_40 |
en |
dc.identifier.volume |
5849 LNCS |
en |
dc.identifier.spage |
411 |
en |
dc.identifier.epage |
412 |
en |