HEAL DSpace

Short term load forecasting in interconnected greek power system using ANN: Confidence interval estimation using a novel re-sampling technique with corrective factor

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tsekouras, GJ en
dc.contributor.author Mastorakis, NE en
dc.contributor.author Kanellos, FD en
dc.contributor.author Kontargyri, VT en
dc.contributor.author Tsirekis, CD en
dc.contributor.author Karanasiou, IS en
dc.contributor.author Elias, ChN en
dc.contributor.author Salis, AD en
dc.contributor.author Contaxis, PA en
dc.contributor.author Gialketsi, AA en
dc.date.accessioned 2014-03-01T02:52:45Z
dc.date.available 2014-03-01T02:52:45Z
dc.date.issued 2010 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/36043
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-79959890401&partnerID=40&md5=9c4cf5165574b415cef8108e4b5927f8 en
dc.subject Artificial neural networks en
dc.subject Confidence interval en
dc.subject Re-sampling technique en
dc.subject Short-term load forecasting en
dc.subject.other Artificial Neural Network en
dc.subject.other Confidence interval en
dc.subject.other Confidence interval estimation en
dc.subject.other Corrective factor en
dc.subject.other Forecasting methods en
dc.subject.other Load demand en
dc.subject.other Multiplication factor en
dc.subject.other Power system loads en
dc.subject.other Resampling en
dc.subject.other Resampling method en
dc.subject.other Short term load forecasting en
dc.subject.other Short-term forecasting en
dc.subject.other Test sets en
dc.subject.other Training data sets en
dc.subject.other Training sets en
dc.subject.other Financial data processing en
dc.subject.other Forecasting en
dc.subject.other Networks (circuits) en
dc.subject.other Neural networks en
dc.subject.other Power transmission en
dc.subject.other Signal processing en
dc.subject.other Electric load forecasting en
dc.title Short term load forecasting in interconnected greek power system using ANN: Confidence interval estimation using a novel re-sampling technique with corrective factor en
heal.type conferenceItem en
heal.publicationDate 2010 en
heal.abstract The modern methods for power system load prediction are usually based on Artificial Neural Networks (ANN), which present satisfactory results. However, the estimation of the confidence intervals can not be applied directly, unlike to the classical forecasting methods. One of the most commonly used methods is the re-sampling technique, which calculates the respective confidence interval based on the training data set. The limits of the training set confidence interval are also applied in the case of the real prediction giving satisfactory but slightly underestimated results. The targets of this paper are: (1) to apply the basic re-sampling method for the short term forecasting of the next day load in the interconnected Greek power system using an optimized ANN proving the aforementioned disadvantage and (2) to propose a modified re-sampling technique using a proper corrective multiplication factor. Finally, the next day load demand of the test set is estimated using the best ANN structure and the modified confidence intervals. en
heal.journalName International conference on Circuits, Systems, Electronics, Control and Signal Processing - Proceedings en
dc.identifier.spage 166 en
dc.identifier.epage 172 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής