dc.contributor.author |
Peppa, S |
en |
dc.contributor.author |
Kaiktsis, L |
en |
dc.contributor.author |
Triantafyllou, G |
en |
dc.date.accessioned |
2014-03-01T02:52:46Z |
|
dc.date.available |
2014-03-01T02:52:46Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.issn |
08888116 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/36057 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-80054965712&partnerID=40&md5=ae012b9c15a46465faf92e9902d98c3d |
en |
dc.subject.other |
Computational studies |
en |
dc.subject.other |
Fluid forces |
en |
dc.subject.other |
Higher harmonics |
en |
dc.subject.other |
In-line |
en |
dc.subject.other |
In-line oscillations |
en |
dc.subject.other |
Lift force |
en |
dc.subject.other |
Oscillation amplitude |
en |
dc.subject.other |
Time dependence |
en |
dc.subject.other |
Transverse frequency |
en |
dc.subject.other |
Transverse oscillation |
en |
dc.subject.other |
Vibration frequency |
en |
dc.subject.other |
Vortex induced vibration |
en |
dc.subject.other |
Acoustic noise |
en |
dc.subject.other |
Circular cylinders |
en |
dc.subject.other |
Fluid structure interaction |
en |
dc.subject.other |
Fluids |
en |
dc.subject.other |
Oscillating cylinders |
en |
dc.subject.other |
Reynolds number |
en |
dc.subject.other |
Vibrations (mechanical) |
en |
dc.subject.other |
Oscillating flow |
en |
dc.title |
The effect of in-line oscillation on the forces of a cylinder vibrating in a steady flow |
en |
heal.type |
conferenceItem |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
In this paper we present a computational study of the forces acting on a circular cylinder vibrating both transversely and in-line to a uniform stream. The in-line vibration frequency is equal to twice the transverse frequency. The cylinder thus follows a figure-eight trajectory, emulating the trajectory of a free vortex-induced vibration. We consider three values of transverse oscillation frequency, in the regime of the natural frequency of the Kármán street, for a Reynolds number of 400. We find that the fluid forces are greatly influenced by the direction in which the figure-eight is traversed. We also find that the spectrum of the lift force is characterized by the strong presence of odd-numbered higher harmonics. Moreover, depending on the combination of oscillation amplitude and frequency, the lift force exhibits aperiodic time dependence. Copyright © 2010 by ASME. |
en |
heal.journalName |
American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FEDSM |
en |
dc.identifier.volume |
3 |
en |
dc.identifier.issue |
PARTS A AND B |
en |
dc.identifier.spage |
21 |
en |
dc.identifier.epage |
28 |
en |