dc.contributor.author |
Morzinger, R |
en |
dc.contributor.author |
Thaler, M |
en |
dc.contributor.author |
Rene, S |
en |
dc.contributor.author |
Albert, H |
en |
dc.contributor.author |
Thallinger, G |
en |
dc.contributor.author |
Sardis, M |
en |
dc.contributor.author |
Anagnostopoulos, V |
en |
dc.contributor.author |
Kosmopoulos, D |
en |
dc.contributor.author |
Voulodimos, A |
en |
dc.contributor.author |
Lalos, C |
en |
dc.contributor.author |
Doulamis, N |
en |
dc.contributor.author |
Varvarigou, T |
en |
dc.contributor.author |
Rosenberg, I |
en |
dc.contributor.author |
Zelada, RP |
en |
dc.contributor.author |
Jubert, IS |
en |
dc.contributor.author |
Grabner, H |
en |
dc.contributor.author |
Stalder, S |
en |
dc.contributor.author |
Van Gool, L |
en |
dc.contributor.author |
Veres, G |
en |
dc.contributor.author |
Middleton, L |
en |
dc.contributor.author |
Sabeur, Z |
en |
dc.contributor.author |
Bouchrika, I |
en |
dc.contributor.author |
Arbab-Zavar, B |
en |
dc.contributor.author |
Carter, J |
en |
dc.contributor.author |
Nixon, M |
en |
dc.date.accessioned |
2014-03-01T02:52:47Z |
|
dc.date.available |
2014-03-01T02:52:47Z |
|
dc.date.issued |
2010 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/36062 |
|
dc.subject |
Applications |
en |
dc.subject |
Computer vision |
en |
dc.subject |
Human detection and tracking |
en |
dc.subject |
Industrial environments |
en |
dc.subject |
Workflow recognition |
en |
dc.subject.other |
Adjusting algorithm |
en |
dc.subject.other |
Automatic Detection |
en |
dc.subject.other |
Car assembly |
en |
dc.subject.other |
Complex workflows |
en |
dc.subject.other |
Ground truth |
en |
dc.subject.other |
Human detection |
en |
dc.subject.other |
Human operator |
en |
dc.subject.other |
Industrial environments |
en |
dc.subject.other |
Industrial safety |
en |
dc.subject.other |
Multiple cameras |
en |
dc.subject.other |
Process quality |
en |
dc.subject.other |
Relevance feedback |
en |
dc.subject.other |
Retrospective analysis |
en |
dc.subject.other |
Semi-automatics |
en |
dc.subject.other |
Work-flows |
en |
dc.subject.other |
Workflow monitoring |
en |
dc.subject.other |
Workflow recognition |
en |
dc.subject.other |
Accident prevention |
en |
dc.subject.other |
Cameras |
en |
dc.subject.other |
Computer applications |
en |
dc.subject.other |
Computer vision |
en |
dc.subject.other |
Feedback |
en |
dc.subject.other |
Industry |
en |
dc.subject.other |
Mathematical operators |
en |
dc.subject.other |
Risk management |
en |
dc.subject.other |
Equipment |
en |
dc.title |
Tools for semi-automatic monitoring of industrial workflows |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1145/1877868.1877889 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1145/1877868.1877889 |
en |
heal.publicationDate |
2010 |
en |
heal.abstract |
This paper describes a tool chain for monitoring complex workflows. Statistics obtained from automatic workflow monitoring in a car assembly environment assist in improving industrial safety and process quality. To this end, we propose automatic detection and tracking of humans and their activity in multiple networked cameras. The described tools offer human operators retrospective analysis of a huge amount of pre-recorded and analyzed footage from multiple cameras in order to get a comprehensive overview of the workflows. Furthermore, the tools help technical administrators in adjusting algorithms by letting the user correct detections (for relevance feedback) and ground truth for evaluation. Another important feature of the tool chain is the capability to inform the employees about potentially risky conditions using the tool for automatic detection of unusual scenes. |
en |
heal.journalName |
ARTEMIS'10 - Proceedings of the 1st ACM Workshop on Analysis and Retrieval of Tracked Events and Motion in Imagery Streams, Co-located with ACM Multimedia 2010 |
en |
dc.identifier.doi |
10.1145/1877868.1877889 |
en |
dc.identifier.spage |
81 |
en |
dc.identifier.epage |
86 |
en |