HEAL DSpace

A layered approach to revisitation prediction

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Papadakis, G en
dc.contributor.author Kawase, R en
dc.contributor.author Herder, E en
dc.contributor.author Niederee, C en
dc.date.accessioned 2014-03-01T02:52:50Z
dc.date.available 2014-03-01T02:52:50Z
dc.date.issued 2011 en
dc.identifier.issn 03029743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/36100
dc.subject.other Data sets en
dc.subject.other Experimental evaluation en
dc.subject.other Revisitation en
dc.subject.other Second layer en
dc.subject.other Three-layer en
dc.subject.other Computer architecture en
dc.subject.other Data processing en
dc.subject.other World Wide Web en
dc.subject.other User interfaces en
dc.title A layered approach to revisitation prediction en
heal.type conferenceItem en
heal.identifier.primary 10.1007/978-3-642-22233-7_18 en
heal.identifier.secondary http://dx.doi.org/10.1007/978-3-642-22233-7_18 en
heal.publicationDate 2011 en
heal.abstract Web browser users return to Web pages for various reasons. Apart from pages visited due to backtracking, they typically have a number of favorite/important pages that they monitor or tasks that reoccur on an infrequent basis. In this paper, we introduce the architecture of a system that facilitates revisitations through the effective prediction of the next page request. It consists of three layers, each dealing with a specific aspect of revisitation patterns: the first one estimates the value of each page by balancing the recency and the frequency of its requests; the second one captures the contextual regularities in users' navigational activity in order to promote related pages, and the third one dynamically adapts the page associations of the second layer to the constant drift in the interests of users. For each layer, we introduce several methods, and evaluate them over a large, real-world dataset. The outcomes of our experimental evaluation suggest a significant improvement over other methods typically used in this context. © 2011 Springer-Verlag. en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
dc.identifier.doi 10.1007/978-3-642-22233-7_18 en
dc.identifier.volume 6757 LNCS en
dc.identifier.spage 258 en
dc.identifier.epage 273 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής