dc.contributor.author |
Sideratos, G |
en |
dc.contributor.author |
Vitellas, I |
en |
dc.contributor.author |
Hatziargyriou, N |
en |
dc.date.accessioned |
2014-03-01T02:52:50Z |
|
dc.date.available |
2014-03-01T02:52:50Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/36101 |
|
dc.subject |
Load Forecasting |
en |
dc.subject |
Multilayer Perceptrons |
en |
dc.subject |
Particle Swarm Optimization |
en |
dc.subject |
Radial Basis Function Neural Network |
en |
dc.subject.other |
Generalization ability |
en |
dc.subject.other |
Hybrid method |
en |
dc.subject.other |
Hybrid model |
en |
dc.subject.other |
Isolated power system |
en |
dc.subject.other |
Load demand |
en |
dc.subject.other |
Load forecasting |
en |
dc.subject.other |
Particle swarm |
en |
dc.subject.other |
Particle swarm optimization algorithm |
en |
dc.subject.other |
Radial basis function neural networks |
en |
dc.subject.other |
Self-learning |
en |
dc.subject.other |
Cybernetics |
en |
dc.subject.other |
Forecasting |
en |
dc.subject.other |
Intelligent systems |
en |
dc.subject.other |
Multilayer neural networks |
en |
dc.subject.other |
Multilayers |
en |
dc.subject.other |
Particle swarm optimization (PSO) |
en |
dc.subject.other |
Pattern recognition systems |
en |
dc.subject.other |
Power transmission |
en |
dc.subject.other |
Radial basis function networks |
en |
dc.subject.other |
Electric load forecasting |
en |
dc.title |
A load forecasting hybrid method for an isolated power system |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/ISAP.2011.6082190 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ISAP.2011.6082190 |
en |
heal.identifier.secondary |
6082190 |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
This paper presents a load forecasting hybrid model designed for isolated power systems. The proposed model consists of four modules that estimate initially the future load demand and a combination module. Radial basis function neural networks (RBFNNs) are applied to make the initial predictions and multilayer perceptrons (MLPs) are used to combine them. Emphasis is given to the RBFNNs generalization ability developing a self-learning procedure with the Particle Swarm Optimization (PSO) algorithm. Satisfactory results are obtained after the evaluation in the Crete case study. © 2011 IEEE. |
en |
heal.journalName |
2011 16th International Conference on Intelligent System Applications to Power Systems, ISAP 2011 |
en |
dc.identifier.doi |
10.1109/ISAP.2011.6082190 |
en |