HEAL DSpace

A load forecasting hybrid method for an isolated power system

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Sideratos, G en
dc.contributor.author Vitellas, I en
dc.contributor.author Hatziargyriou, N en
dc.date.accessioned 2014-03-01T02:52:50Z
dc.date.available 2014-03-01T02:52:50Z
dc.date.issued 2011 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/36101
dc.subject Load Forecasting en
dc.subject Multilayer Perceptrons en
dc.subject Particle Swarm Optimization en
dc.subject Radial Basis Function Neural Network en
dc.subject.other Generalization ability en
dc.subject.other Hybrid method en
dc.subject.other Hybrid model en
dc.subject.other Isolated power system en
dc.subject.other Load demand en
dc.subject.other Load forecasting en
dc.subject.other Particle swarm en
dc.subject.other Particle swarm optimization algorithm en
dc.subject.other Radial basis function neural networks en
dc.subject.other Self-learning en
dc.subject.other Cybernetics en
dc.subject.other Forecasting en
dc.subject.other Intelligent systems en
dc.subject.other Multilayer neural networks en
dc.subject.other Multilayers en
dc.subject.other Particle swarm optimization (PSO) en
dc.subject.other Pattern recognition systems en
dc.subject.other Power transmission en
dc.subject.other Radial basis function networks en
dc.subject.other Electric load forecasting en
dc.title A load forecasting hybrid method for an isolated power system en
heal.type conferenceItem en
heal.identifier.primary 10.1109/ISAP.2011.6082190 en
heal.identifier.secondary http://dx.doi.org/10.1109/ISAP.2011.6082190 en
heal.identifier.secondary 6082190 en
heal.publicationDate 2011 en
heal.abstract This paper presents a load forecasting hybrid model designed for isolated power systems. The proposed model consists of four modules that estimate initially the future load demand and a combination module. Radial basis function neural networks (RBFNNs) are applied to make the initial predictions and multilayer perceptrons (MLPs) are used to combine them. Emphasis is given to the RBFNNs generalization ability developing a self-learning procedure with the Particle Swarm Optimization (PSO) algorithm. Satisfactory results are obtained after the evaluation in the Crete case study. © 2011 IEEE. en
heal.journalName 2011 16th International Conference on Intelligent System Applications to Power Systems, ISAP 2011 en
dc.identifier.doi 10.1109/ISAP.2011.6082190 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής