dc.contributor.author |
Tsetseris, L |
en |
dc.contributor.author |
Pantelides, ST |
en |
dc.date.accessioned |
2014-03-01T02:52:54Z |
|
dc.date.available |
2014-03-01T02:52:54Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
19385862 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/36137 |
|
dc.subject.other |
Atomic-scale mechanisms |
en |
dc.subject.other |
Basal planes |
en |
dc.subject.other |
C-C bonds |
en |
dc.subject.other |
Complex dynamics |
en |
dc.subject.other |
Experimental data |
en |
dc.subject.other |
First-principles |
en |
dc.subject.other |
Graphene nanoribbons |
en |
dc.subject.other |
Hydrogen atoms |
en |
dc.subject.other |
Nanoelectronic devices |
en |
dc.subject.other |
Open-ended carbon nanotubes |
en |
dc.subject.other |
Quantum-mechanical study |
en |
dc.subject.other |
Ammonia |
en |
dc.subject.other |
Atomic physics |
en |
dc.subject.other |
Carbon nanotubes |
en |
dc.subject.other |
Dielectric materials |
en |
dc.subject.other |
Electronic properties |
en |
dc.subject.other |
Growth (materials) |
en |
dc.subject.other |
Photonics |
en |
dc.subject.other |
Graphene |
en |
dc.title |
Atomic-scale mechanisms of growth and doping of graphene nano-ribbons |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1149/1.3633022 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1149/1.3633022 |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
Control over structural and electronic properties of graphene samples is necessary for the fabrication of nano-electronic devices. Here we report the results of first-principles quantum-mechanical studies on the growth and doping of graphene nanoribbons (GNR). We find that hydrogenation of open-ended carbon nanotubes (CNT) can lead to successive breaking of tip C-C bonds. If enough hydrogen atoms are supplied then the CNTs unzip to GNRs with specific widths and edge morphologies. We also examine the possibilities that ammonia-related species can inject carriers in graphene. We show that NH3 molecules have a complex dynamics on graphene. Annealing in ammonia can result in the formation of donors on the graphene basal plane, or the de-activation of dopants on graphene and at GNR edges. The results explain available experimental data and suggest new ways to optimize the properties and performance of GNR-based systems. ©The Electrochemical Society. |
en |
heal.journalName |
ECS Transactions |
en |
dc.identifier.doi |
10.1149/1.3633022 |
en |
dc.identifier.volume |
41 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
71 |
en |
dc.identifier.epage |
75 |
en |