dc.contributor.author |
Afrati, FN |
en |
dc.contributor.author |
Borkar, V |
en |
dc.contributor.author |
Carey, M |
en |
dc.contributor.author |
Polyzotis, N |
en |
dc.contributor.author |
Ullman, JD |
en |
dc.date.accessioned |
2014-03-01T02:52:56Z |
|
dc.date.available |
2014-03-01T02:52:56Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
03029743 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/36155 |
|
dc.subject.other |
Computing clusters |
en |
dc.subject.other |
Datalog |
en |
dc.subject.other |
Datalog programs |
en |
dc.subject.other |
Execute query |
en |
dc.subject.other |
Key elements |
en |
dc.subject.other |
Map-reduce |
en |
dc.subject.other |
Node failure |
en |
dc.subject.other |
Open source implementation |
en |
dc.subject.other |
Output only |
en |
dc.subject.other |
Recursions |
en |
dc.subject.other |
Recursive process |
en |
dc.subject.other |
Recursive programs |
en |
dc.subject.other |
Semi-naive evaluation |
en |
dc.subject.other |
Transitive closure |
en |
dc.subject.other |
Artificial intelligence |
en |
dc.subject.other |
Cluster computing |
en |
dc.title |
Cluster computing, recursion and datalog |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/978-3-642-24206-9_8 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/978-3-642-24206-9_8 |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
The cluster-computing environment typified by Hadoop, the open-source implementation of map-reduce, is receiving serious attention as the way to execute queries and other operations on very large-scale data. Datalog execution presents several unusual issues for this enviroment. We discuss the best way to execute a round of seminaive evaluation on a computing cluster using the map-reduce. Using transitive closure as an example, we examine the cost of executing recursions in several different ways. Recursive processes such as evaluation of a recursive Datalog program do not fit the key map-reduce assumption that tasks deliver output only when they are completed. As a result, the resilience under compute-node failure that is a key element of the map-reduce framework is not supported for recursive programs. We discuss extensions to this framework that are suitable for executing recursive Datalog programs on very large-scale data in a way that allows progress to continue after node failures, without restarting the entire job. © 2011 Springer-Verlag. |
en |
heal.journalName |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
en |
dc.identifier.doi |
10.1007/978-3-642-24206-9_8 |
en |
dc.identifier.volume |
6702 LNCS |
en |
dc.identifier.spage |
120 |
en |
dc.identifier.epage |
144 |
en |