dc.contributor.author |
Xu, XF |
en |
dc.contributor.author |
Stefanou, G |
en |
dc.date.accessioned |
2014-03-01T02:52:56Z |
|
dc.date.available |
2014-03-01T02:52:56Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/36163 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-80054820069&partnerID=40&md5=d377acd231bf561a8e764359f9413e0f |
en |
dc.subject |
Nonlinear |
en |
dc.subject |
Orthogonal expansion |
en |
dc.subject |
Random vibration |
en |
dc.subject.other |
Engineering problems |
en |
dc.subject.other |
First-order |
en |
dc.subject.other |
Gaussian Processes |
en |
dc.subject.other |
Lagrangian |
en |
dc.subject.other |
Non-Gaussian |
en |
dc.subject.other |
Non-linear oscillators |
en |
dc.subject.other |
Nonlinear |
en |
dc.subject.other |
Orthogonal expansion |
en |
dc.subject.other |
Random excitations |
en |
dc.subject.other |
Random vibrations |
en |
dc.subject.other |
Stochastic dynamics |
en |
dc.subject.other |
Strongly nonlinear |
en |
dc.subject.other |
Trial functions |
en |
dc.subject.other |
Variational methods |
en |
dc.subject.other |
Vibration systems |
en |
dc.subject.other |
Civil engineering |
en |
dc.subject.other |
Computational methods |
en |
dc.subject.other |
Earthquakes |
en |
dc.subject.other |
Engineering geology |
en |
dc.subject.other |
Expansion |
en |
dc.subject.other |
Gaussian noise (electronic) |
en |
dc.subject.other |
Stochastic models |
en |
dc.subject.other |
Stochastic systems |
en |
dc.subject.other |
Structural dynamics |
en |
dc.subject.other |
Dynamics |
en |
dc.title |
Computational stochastic dynamics based on orthogonal expansion of random excitations |
en |
heal.type |
conferenceItem |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
A major challenge in stochastic dynamics is to model nonlinear systems subject to general non-Gaussian excitations which are prevalent in realistic engineering problems. In this work, an n-th order convolved orthogonal expansion (COE) method is proposed. For li- near vibration systems, the statistics of the output can be directly obtained as the first-order COE about the underlying Gaussian process. The COE method is next verified by its application on a weakly nonlinear oscillator. In dealing with strongly nonlinear dynamics problems, a variational method is presented by formulating a convolution-type Lagrangian and using the COE representation as trial functions. |
en |
heal.journalName |
ECCOMAS Thematic Conference - COMPDYN 2011: 3rd International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering: An IACM Special Interest Conference, Programme |
en |