HEAL DSpace

Detecting and exploiting stability in evolving heterogeneous information spaces

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Papadakis, G en
dc.contributor.author Giannakopoulos, G en
dc.contributor.author Niederee, C en
dc.contributor.author Palpanas, T en
dc.contributor.author Nejdl, W en
dc.date.accessioned 2014-03-01T02:53:06Z
dc.date.available 2014-03-01T02:53:06Z
dc.date.issued 2011 en
dc.identifier.issn 15525996 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/36181
dc.subject entity evolution en
dc.subject n-gram graphs en
dc.subject stability detection en
dc.subject.other Classification scheme en
dc.subject.other Data sets en
dc.subject.other entity evolution en
dc.subject.other Experimental studies en
dc.subject.other Heterogeneous information en
dc.subject.other Information integration en
dc.subject.other n-gram graphs en
dc.subject.other Semi structured data en
dc.subject.other Stable parts en
dc.subject.other Structured data en
dc.subject.other Information retrieval en
dc.subject.other User interfaces en
dc.subject.other Digital libraries en
dc.title Detecting and exploiting stability in evolving heterogeneous information spaces en
heal.type conferenceItem en
heal.identifier.primary 10.1145/1998076.1998094 en
heal.identifier.secondary http://dx.doi.org/10.1145/1998076.1998094 en
heal.publicationDate 2011 en
heal.abstract Individuals contribute content on the Web at an unprecedented rate, accumulating immense quantities of (semi-)structured data. Wisdom of the Crowds theory advocates that such information (or parts of it) is constantly overwritten, updated, or even deleted by other users, with the goal of rendering it more accurate, or up-to-date. This is particularly true for the collaboratively edited, semi-structured data of entity repositories, whose entity profiles are consistently kept fresh. Therefore, their core information that remain stable with the passage of time, despite being reviewed by numerous users, are particularly useful for the description of an entity. Based on the above hypothesis, we introduce a classification scheme that predicts, on the basis of statistical and content patterns, whether an attribute (i.e., name-value pair) is going to be modified in the future. We apply our scheme on a large, real-world, versioned dataset and verify its effectiveness. Our thorough experimental study also suggests that reducing entity profiles to their stable parts conveys significant benefits to two common tasks in computer science: information retrieval and information integration. © 2011 ACM. en
heal.journalName Proceedings of the ACM/IEEE Joint Conference on Digital Libraries en
dc.identifier.doi 10.1145/1998076.1998094 en
dc.identifier.spage 95 en
dc.identifier.epage 104 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής