HEAL DSpace

Enhancing handwritten word segmentation by employing local spatial features

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Simistira, F en
dc.contributor.author Papavassiliou, V en
dc.contributor.author Stafylakis, T en
dc.contributor.author Katsouros, V en
dc.date.accessioned 2014-03-01T02:53:16Z
dc.date.available 2014-03-01T02:53:16Z
dc.date.issued 2011 en
dc.identifier.issn 15205363 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/36199
dc.subject document image processing en
dc.subject handwritten word segmentation en
dc.subject support vector machines en
dc.subject.other Connected component en
dc.subject.other Data sets en
dc.subject.other Document image processing en
dc.subject.other Gap metrics en
dc.subject.other Global threshold en
dc.subject.other Handwriting segmentation en
dc.subject.other handwritten word segmentation en
dc.subject.other Handwritten words en
dc.subject.other Linear classifiers en
dc.subject.other Linear SVM en
dc.subject.other Local feature en
dc.subject.other Objective functions en
dc.subject.other Spatial features en
dc.subject.other Support vector en
dc.subject.other Text lines en
dc.subject.other Word segmentation en
dc.subject.other Computational linguistics en
dc.subject.other Feature extraction en
dc.subject.other Image segmentation en
dc.subject.other Support vector machines en
dc.subject.other Text processing en
dc.subject.other Character recognition en
dc.title Enhancing handwritten word segmentation by employing local spatial features en
heal.type conferenceItem en
heal.identifier.primary 10.1109/ICDAR.2011.264 en
heal.identifier.secondary http://dx.doi.org/10.1109/ICDAR.2011.264 en
heal.identifier.secondary 6065523 en
heal.publicationDate 2011 en
heal.abstract This paper proposes an enhancement of our previously presented word segmentation method (ILSPLWseg) [1] by exploiting local spatial features. ILSP-LWseg is based on a gap metric that exploits the objective function of a soft-margin linear SVM that separates successive connected components (CCs). Then a global threshold for the gap metrics is estimated and used to classify the candidate gaps in ""within"" or ""between"" words classes. In the proposed enhancement the initial categorization is examined against the local features (i.e. margin and slope of the linear classifier for every pair of CCs in each text line) and a refined classification is applied for each text line. The method was tested on the benchmarking datasets of ICDAR07, ICDAR09 and ICFHR10 handwriting segmentation contests and performs better than the winning algorithm. © 2011 IEEE. en
heal.journalName Proceedings of the International Conference on Document Analysis and Recognition, ICDAR en
dc.identifier.doi 10.1109/ICDAR.2011.264 en
dc.identifier.spage 1314 en
dc.identifier.epage 1318 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής