dc.contributor.author |
Simistira, F |
en |
dc.contributor.author |
Papavassiliou, V |
en |
dc.contributor.author |
Stafylakis, T |
en |
dc.contributor.author |
Katsouros, V |
en |
dc.date.accessioned |
2014-03-01T02:53:16Z |
|
dc.date.available |
2014-03-01T02:53:16Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
15205363 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/36199 |
|
dc.subject |
document image processing |
en |
dc.subject |
handwritten word segmentation |
en |
dc.subject |
support vector machines |
en |
dc.subject.other |
Connected component |
en |
dc.subject.other |
Data sets |
en |
dc.subject.other |
Document image processing |
en |
dc.subject.other |
Gap metrics |
en |
dc.subject.other |
Global threshold |
en |
dc.subject.other |
Handwriting segmentation |
en |
dc.subject.other |
handwritten word segmentation |
en |
dc.subject.other |
Handwritten words |
en |
dc.subject.other |
Linear classifiers |
en |
dc.subject.other |
Linear SVM |
en |
dc.subject.other |
Local feature |
en |
dc.subject.other |
Objective functions |
en |
dc.subject.other |
Spatial features |
en |
dc.subject.other |
Support vector |
en |
dc.subject.other |
Text lines |
en |
dc.subject.other |
Word segmentation |
en |
dc.subject.other |
Computational linguistics |
en |
dc.subject.other |
Feature extraction |
en |
dc.subject.other |
Image segmentation |
en |
dc.subject.other |
Support vector machines |
en |
dc.subject.other |
Text processing |
en |
dc.subject.other |
Character recognition |
en |
dc.title |
Enhancing handwritten word segmentation by employing local spatial features |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/ICDAR.2011.264 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ICDAR.2011.264 |
en |
heal.identifier.secondary |
6065523 |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
This paper proposes an enhancement of our previously presented word segmentation method (ILSPLWseg) [1] by exploiting local spatial features. ILSP-LWseg is based on a gap metric that exploits the objective function of a soft-margin linear SVM that separates successive connected components (CCs). Then a global threshold for the gap metrics is estimated and used to classify the candidate gaps in ""within"" or ""between"" words classes. In the proposed enhancement the initial categorization is examined against the local features (i.e. margin and slope of the linear classifier for every pair of CCs in each text line) and a refined classification is applied for each text line. The method was tested on the benchmarking datasets of ICDAR07, ICDAR09 and ICFHR10 handwriting segmentation contests and performs better than the winning algorithm. © 2011 IEEE. |
en |
heal.journalName |
Proceedings of the International Conference on Document Analysis and Recognition, ICDAR |
en |
dc.identifier.doi |
10.1109/ICDAR.2011.264 |
en |
dc.identifier.spage |
1314 |
en |
dc.identifier.epage |
1318 |
en |