dc.contributor.author |
Kontogiannis, K |
en |
dc.contributor.author |
Wasfy, A |
en |
dc.contributor.author |
Mankovskii, S |
en |
dc.date.accessioned |
2014-03-01T02:53:16Z |
|
dc.date.available |
2014-03-01T02:53:16Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/36203 |
|
dc.subject |
clustering |
en |
dc.subject |
log analysis |
en |
dc.subject |
log reduction |
en |
dc.subject |
software systems |
en |
dc.subject |
use case determination |
en |
dc.subject.other |
clustering |
en |
dc.subject.other |
Log analysis |
en |
dc.subject.other |
Log reductions |
en |
dc.subject.other |
software systems |
en |
dc.subject.other |
use case determination |
en |
dc.subject.other |
Computer software |
en |
dc.subject.other |
Systems analysis |
en |
dc.subject.other |
Computer software maintenance |
en |
dc.title |
Event clustering for log reduction and run time system understanding |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1145/1982185.1982229 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1145/1982185.1982229 |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
Large software systems are constantly monitored so that audits can be initiated, once a failure occurs or when maintenance operations are performed. However, the log files are usually sizeable, and require filtering and reduction in order to be processed efficiently. In this paper, we define the concept of the Event Dependency Graph, and we discuss an event filtering and a use case identification technique, that is based on event clustering. This technique can be used to reduce the size of system logs and assist on system analysis and, program understanding. © 2011 Authors. |
en |
heal.journalName |
Proceedings of the ACM Symposium on Applied Computing |
en |
dc.identifier.doi |
10.1145/1982185.1982229 |
en |
dc.identifier.spage |
191 |
en |
dc.identifier.epage |
192 |
en |