dc.contributor.author |
Clauss, GF |
en |
dc.contributor.author |
Mavrakos, SA |
en |
dc.contributor.author |
Sprenger, F |
en |
dc.contributor.author |
Testa, D |
en |
dc.contributor.author |
Dudek, M |
en |
dc.date.accessioned |
2014-03-01T02:53:18Z |
|
dc.date.available |
2014-03-01T02:53:18Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/36226 |
|
dc.subject.other |
Cargo tanks |
en |
dc.subject.other |
Drift motion |
en |
dc.subject.other |
Free fluids |
en |
dc.subject.other |
Frequency shift |
en |
dc.subject.other |
High energy densities |
en |
dc.subject.other |
Intact stability |
en |
dc.subject.other |
Liquid motion |
en |
dc.subject.other |
Marine locations |
en |
dc.subject.other |
Motion behavior |
en |
dc.subject.other |
Multi-body |
en |
dc.subject.other |
Re-gasification |
en |
dc.subject.other |
Resonant tanks |
en |
dc.subject.other |
Surge motions |
en |
dc.subject.other |
Transfer period |
en |
dc.subject.other |
Transport distances |
en |
dc.subject.other |
Vessel motions |
en |
dc.subject.other |
Arctic engineering |
en |
dc.subject.other |
Gas supply |
en |
dc.subject.other |
Hulls (ship) |
en |
dc.subject.other |
Liquefied natural gas |
en |
dc.subject.other |
Natural frequencies |
en |
dc.subject.other |
Natural gas transportation |
en |
dc.subject.other |
Tanks (containers) |
en |
dc.subject.other |
Tankers (ships) |
en |
dc.title |
Hydrodynamic considerations for FLNG concepts |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1115/OMAE2011-50132 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1115/OMAE2011-50132 |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
The current demand in liquefied natural gas (LNG) encouraged the design of various concepts for floating LNG (FLNG) liquefaction or regasification facilities. With increasing transport distance, e.g. from remote marine locations to the onshore gas supply net, gas pipelines become uneconomic compared to shuttle carriers for LNG (LNGC). Due to its high energy density, offshore transfer from processing terminals to carriers and from carriers back to receiving terminals has to be analyzed in detail. During the transfer period, free fluid surfaces occurring in the cargo tanks of the LNGC are leading to a significant decrease of the initial intact stability and altered motion behavior. This paper focusses on the influence of resonant tank sloshing on the LNGC's roll and surge motions. Analyses of transverse and longitudinal sloshing yield a surprising phenomenon: the frequency shift Dw between the theoretical natural frequency of the tank alone and the respective motion peak for a vessel with four tanks mounted to the hull. Force measurements between tank and hull reveal a peak at the tank's natural frequency that causes strong liquid motions with related forces and moments on the hull but no increased vessel motions. Additional investigations comprise the offloading situation with a multi-body arrangement of LNGC and a FLNG (the MPLS20 system) in tandem and briefly also in side-by-side configuration. The slow drift motions on the turretmoored FLNG are exemplarily investigated in head seas. Copyright © 2011 by ASME. |
en |
heal.journalName |
Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE |
en |
dc.identifier.doi |
10.1115/OMAE2011-50132 |
en |
dc.identifier.volume |
1 |
en |
dc.identifier.spage |
723 |
en |
dc.identifier.epage |
735 |
en |