HEAL DSpace

Information market based recommender systems fusion

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Bothos, E en
dc.contributor.author Christidis, K en
dc.contributor.author Apostolou, D en
dc.contributor.author Mentzas, G en
dc.date.accessioned 2014-03-01T02:53:19Z
dc.date.available 2014-03-01T02:53:19Z
dc.date.issued 2011 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/36233
dc.subject Collaborative filtering en
dc.subject Content-based recommendation en
dc.subject Ensemble recommenders en
dc.subject Information markets en
dc.subject.other Building blockes en
dc.subject.other Collaborative filtering en
dc.subject.other Content-based recommendation en
dc.subject.other Data sets en
dc.subject.other Ensemble recommenders en
dc.subject.other Information market en
dc.subject.other User activity en
dc.subject.other Blending en
dc.subject.other Commerce en
dc.subject.other Data processing en
dc.subject.other Recommender systems en
dc.title Information market based recommender systems fusion en
heal.type conferenceItem en
heal.identifier.primary 10.1145/2039320.2039321 en
heal.identifier.secondary http://dx.doi.org/10.1145/2039320.2039321 en
heal.publicationDate 2011 en
heal.abstract Recommender Systems have emerged as a way to tackle the overload of information reected in the increasing volume of information artefacts in the web and elsewhere. Recommender Systems analyse existing information on the user activities in order to estimate future preferences. However, in real life situations, different types of information can be found and their interpretation can vary as well. Each recommender system implements a different approach for utilizing the known information and predicting the user preferences. A problem is that of blending the recommendations in an adaptive, intuitive way while performing better than base recommenders. In this work we propose an approach based on information markets for the fusion of recommender systems. Information Markets have unique characteristics that make them suitable building blocks for ensemble recommenders. We evaluate our approach with the Movielens and Netix datasets and discuss the results of our experiments. Copyright © 2011 ACM. en
heal.journalName Proceedings of the 2nd International Workshop on Information Heterogeneity and Fusion in Recommender Systems, HetRec 2011 - Held at the 5th ACM Conference on Recommender Systems, RecSys 2011 en
dc.identifier.doi 10.1145/2039320.2039321 en
dc.identifier.spage 1 en
dc.identifier.epage 8 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής