dc.contributor.author |
Pozzi, M |
en |
dc.contributor.author |
Zonta, D |
en |
dc.contributor.author |
Santana, J |
en |
dc.contributor.author |
Colin, M |
en |
dc.contributor.author |
Saillen, N |
en |
dc.contributor.author |
Torfs, T |
en |
dc.contributor.author |
Amditis, A |
en |
dc.contributor.author |
Bimpas, M |
en |
dc.contributor.author |
Stratakos, Y |
en |
dc.contributor.author |
Ulieru, D |
en |
dc.contributor.author |
Bairaktaris, D |
en |
dc.contributor.author |
Frondistou-Yannas, S |
en |
dc.contributor.author |
Kalidromitis, V |
en |
dc.date.accessioned |
2014-03-01T02:53:19Z |
|
dc.date.available |
2014-03-01T02:53:19Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
0277786X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/36242 |
|
dc.subject |
Accelerometers |
en |
dc.subject |
Damage Assessment |
en |
dc.subject |
Long-term monitoring |
en |
dc.subject |
MEMS |
en |
dc.subject |
Strain Gauges |
en |
dc.subject |
Wireless sensors |
en |
dc.subject.other |
Accelerometer sensor |
en |
dc.subject.other |
Damage assessments |
en |
dc.subject.other |
Deformation cycle |
en |
dc.subject.other |
Long term monitoring |
en |
dc.subject.other |
Maintenance cost |
en |
dc.subject.other |
MEMS-based sensors |
en |
dc.subject.other |
Metal frames |
en |
dc.subject.other |
Microelectromechanical systems |
en |
dc.subject.other |
Miniature devices |
en |
dc.subject.other |
Network level |
en |
dc.subject.other |
Operating principles |
en |
dc.subject.other |
Radiofrequency identification tags |
en |
dc.subject.other |
Reduced scale |
en |
dc.subject.other |
Reference devices |
en |
dc.subject.other |
Seismic damage |
en |
dc.subject.other |
Seismic monitoring |
en |
dc.subject.other |
Sensing nodes |
en |
dc.subject.other |
Sensing performance |
en |
dc.subject.other |
Sensing systems |
en |
dc.subject.other |
Shaking tables |
en |
dc.subject.other |
Small size |
en |
dc.subject.other |
Strain Gauges |
en |
dc.subject.other |
Strain sensors |
en |
dc.subject.other |
Ultra-low power consumption |
en |
dc.subject.other |
Visual inspection |
en |
dc.subject.other |
Wireless interfaces |
en |
dc.subject.other |
Wireless sensors |
en |
dc.subject.other |
Accelerometers |
en |
dc.subject.other |
Composite micromechanics |
en |
dc.subject.other |
Concrete buildings |
en |
dc.subject.other |
Concrete construction |
en |
dc.subject.other |
Damage detection |
en |
dc.subject.other |
Gages |
en |
dc.subject.other |
Maintenance |
en |
dc.subject.other |
Microelectromechanical devices |
en |
dc.subject.other |
Monitoring |
en |
dc.subject.other |
Radio frequency identification (RFID) |
en |
dc.subject.other |
Rating |
en |
dc.subject.other |
Reinforced concrete |
en |
dc.subject.other |
Seismology |
en |
dc.subject.other |
Sensors |
en |
dc.title |
Laboratory validation of MEMS-based sensors for post-earthquake damage assessment image |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1117/12.882015 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1117/12.882015 |
en |
heal.identifier.secondary |
79810Y |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
The evaluation of seismic damage is today almost exclusively based on visual inspection, as building owners are generally reluctant to install permanent sensing systems, due to their high installation, management and maintenance costs. To overcome this limitation, the EU-funded MEMSCON project aims to produce small size sensing nodes for measurement of strain and acceleration, integrating Micro-Electro-Mechanical Systems (MEMS) based sensors and Radio Frequency Identification (RFID) tags in a single package that will be attached to reinforced concrete buildings. To reduce the impact of installation and management, data will be transmitted to a remote base station using a wireless interface. During the project, sensor prototypes were produced by assembling pre-existing components and by developing ex-novo miniature devices with ultra-low power consumption and sensing performance beyond that offered by sensors available on the market. The paper outlines the device operating principles, production scheme and working at both unit and network levels. It also reports on validation campaigns conducted in the laboratory to assess system performance. Accelerometer sensors were tested on a reduced scale metal frame mounted on a shaking table, back to back with reference devices, while strain sensors were embedded in both reduced and full-scale reinforced concrete specimens undergoing increasing deformation cycles up to extensive damage and collapse. The paper assesses the economical sustainability and performance of the sensors developed for the project and discusses their applicability to long-term seismic monitoring. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE). |
en |
heal.journalName |
Proceedings of SPIE - The International Society for Optical Engineering |
en |
dc.identifier.doi |
10.1117/12.882015 |
en |
dc.identifier.volume |
7981 |
en |