dc.contributor.author |
Godelitsas, A |
en |
dc.contributor.author |
Stamatelos-Samios, N |
en |
dc.contributor.author |
Kokkoris, M |
en |
dc.contributor.author |
Chatzitheodoridis, E |
en |
dc.date.accessioned |
2014-03-01T02:53:20Z |
|
dc.date.available |
2014-03-01T02:53:20Z |
|
dc.date.issued |
2011 |
en |
dc.identifier.issn |
0168583X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/36245 |
|
dc.subject |
Atmosphere |
en |
dc.subject |
Corrosion |
en |
dc.subject |
Lead |
en |
dc.subject |
Nuclear reaction analysis |
en |
dc.subject |
Patination |
en |
dc.subject |
Raman spectroscopy |
en |
dc.subject.other |
Athens , Greece |
en |
dc.subject.other |
Carbonate layers |
en |
dc.subject.other |
Exposure-time |
en |
dc.subject.other |
Hydrocerussite |
en |
dc.subject.other |
Nuclear reaction analysis |
en |
dc.subject.other |
Patination |
en |
dc.subject.other |
Patination process |
en |
dc.subject.other |
SEM-EDS |
en |
dc.subject.other |
Surface carbon |
en |
dc.subject.other |
Surface layers |
en |
dc.subject.other |
Tandem accelerators |
en |
dc.subject.other |
Corrosion |
en |
dc.subject.other |
Crystal growth |
en |
dc.subject.other |
Earth atmosphere |
en |
dc.subject.other |
Lead |
en |
dc.subject.other |
Raman spectroscopy |
en |
dc.subject.other |
Sulfate minerals |
en |
dc.subject.other |
Sulfur dioxide |
en |
dc.subject.other |
Carbon dioxide |
en |
dc.title |
Lead patination in the atmosphere of Athens, Greece |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1016/j.nimb.2011.04.062 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.nimb.2011.04.062 |
en |
heal.publicationDate |
2011 |
en |
heal.abstract |
Pure metallic Pb foils were exposed to the atmosphere of Athens for different periods of time (up to 150 non-rainy days) in the summer of 2005. The interacted Pb surfaces were probed using the 12C(d,p)13C reaction (Ed: 1100 keV) at the Tandem accelerator of the NCSR ""DEMOKRITOS"". Laser-μRaman and SEM-EDS were also complementary applied. Using the above methodology we recorded surface carbon profiles and concentrations as a function of the exposure time, corresponding to the evolution of the carbonate layer formed onto Pb foils due to the interaction with atmospheric H2O and CO2. The C-containing surface layer was found to be stabilized after ∼120 days. Further investigation by means of laser-μRaman and SEM-EDS indicated that the patina initially consists of Pb-hydroxycarbonates (hydrocerussite) overgrowing Pb-oxides, whereas Pb-sulfates (anglesite) and possibly basic Pb-sulfates are formed at the end of the patination process. The crystal growth of Pb-sulfates, or most likely the transformation of hydroxycarbonates to sulfates, is attributed to the pollution of Athens atmosphere by SO2. © 2011 Elsevier B.V. All rights reserved. |
en |
heal.journalName |
Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms |
en |
dc.identifier.doi |
10.1016/j.nimb.2011.04.062 |
en |
dc.identifier.volume |
269 |
en |
dc.identifier.issue |
24 |
en |
dc.identifier.spage |
3074 |
en |
dc.identifier.epage |
3076 |
en |